IEEE ICC 2016 SAC Cloud Communications and Networking

Chronos: Meeting Coflow Deadlines in
Data Center Networks

Shiyao Ma*, Jingjie Jiang*, Bo Li*, and Baochun Lif
*Department of Computer Science and Engineering, Hong Kong University of Science and Technology
TDepartment of Electrical and Computer Engineering, University of Toronto

Abstract—Guaranteed performance for data-parallel applica-
tions is important for both service providers and cloud data
centers that host such services. A job of data-parallel applications
involves communication among multiple machines to transmit
intermediate results. Such communication comprises a collection
of parallel flows, which is abstracted as a coflow in recent
proposals. In this paper, we study the problem of meeting
deadlines for coflows in data center networks. Existing flow-level
scheduling schemes are insufficient to guarantee the coflow-level
performance, since a coflow can meet its deadline only when all
its constituent flows finish on time. Due to the scarce bandwidth
on the network bottleneck, it is vital to coordinate concurrent
coflows to meet as many deadlines as possible. We present
Chronos, a scheduling framework that captures the correlation of
flows belonging to a coflow, and handles the resource allocation
among multiple concurrent coflows. Chronos is work-conserving
and starvation-free without integrating complicated admission
control mechanisms. We show via extensive simulations on ns3
that Chronos can make 1.6 X more coflows meet their deadlines
compared to flow-level schemes.

I. INTRODUCTION

With the prevalence of data-parallel computing frameworks,
online service providers, such as Google and Facebook, have
moved their applications to data centers. The real-time nature
of these applications results in the need to serve users in
a timely fashion since longer response times can lead to
significant financial loss [1]. The primary goal of service
providers is thus to meet service level agreements (SLAs) and
satisfy user requests within the corresponding hard deadlines.
Since data-parallel applications [2] transfer large amounts of
data among different machines across the data center net-
work, their performance highly depends on the communication
quality. A Hive/MapReduce trace at Facebook show that the
communication time accounts for more than 25% of job
durations for more than 40% of jobs [3]. It is thus important to
meet the communication requirements for the bundle of flows
that transfer intermediate results of a given job.

The recently proposed coflow abstraction [3] depicts the
multiple concurrent flows that transmit intermediate results
among different computation stages of a given job. A coflow
is not considered completed until all its constituent flows
finish. In other words, all the concurrent flows of a coflow

The research was supported in part by grants from RGC under the contracts
615613 and 16211715, a grant from NSFC and Guangdong joint project under
the contract U1301253, and the NSERC Strategic Networks grant titled “Smart
Applications on Virtual Infrastructure.”

978-1-4799-6664-6/16/$31.00 ©2016 |IEEE

share a common performance goal. Nevertheless, existing job
schedulers [4], [5] have only focused on allocating computa-
tion resources, whereas most network schedulers have merely
focused on flow-level performance [6], [7]. Without coflow
semantics, if only a fraction of a coflow’s constituent flows
meet deadlines, the coflow as a whole still misses its deadline.
Therefore, the user-perceived performance is not improved
even when the flow performance is improved. To make things
worse, the limited bandwidth can be wasted on flows of
the already late coflows, which potentially slows down other
coflows that could have met their deadlines otherwise.

In this paper, we study the deadline-driven coflow schedul-
ing problem with the objective of minimizing the number
of late coflows. Distinguished from flow scheduling, coflow
scheduling has to face unique challenges. Firstly, the group of
parallel flows constituting a coflow are correlated with each
other. It is thus necessary to treat them as a whole and collect
coflow-level information to make proper scheduling decisions.
Secondly, edge networks in current data centers still experience
severe congestions in peak hours [8]. The limited bandwidth
on congested links needs to be carefully allocated to improve
the overall application throughput. Finally, when workloads
are imbalanced among servers, not all the coflows traverse
through the hot servers can finish on time. One has to select
a subset of coflows to guarantee their performance, while
avoiding to starve the unselected coflows at the same time.

To meet the challenges discussed above, we design a coflow
scheduling framework, Chronos, to conduct deadline-driven
coflow scheduling. Chronos tries to allocate bandwidth to
flows in proportion to their sizes such that all the flows in
a coflow can finish at the same time. To accommodate as
many coflows as possible, Chronos allocates the bare amount
of bandwidth to a coflow, which is sufficient for it to finish just
at its deadline. When the network is lightly loaded, Chronos
further distributes the idle bandwidth to flows proportionally to
ensure the scheduling is work-conserving. When the network
is heavily loaded, Chronos selects a maximal subset of coflows
to meet their deadlines. An admission control mechanism [3]
simply rejects or suspends the unselected coflows, which leads
to frequent transmission failures. Instead, we embrace limited
multiplexing to flexibly reserve a small amount of bandwidth
for unselected coflows to guarantee starvation-free scheduling.
Furthermore, Chronos gracefully degrades to a weighted fair
sharing scheduler if no deadline information is available.

The main contribution of this paper lies in the scheduling
object shifted from flows to coflows. By inspecting the corre-
lations among flows in a coflow, we more efficiently allocate
bandwidth to flows on the same link. Furthermore, we focus
on the timeliness of coflows rather than the average completion
time of coflows like in existing schemes [9]. Chronos is work-
conserving and starvation-free without involving a complicated
admission control mechanism like in [3] such that a coflow
does not have to pause and resume from time to time.
Extensive experimental results demonstrate that Chronos is
effective both in meeting coflow deadlines and reducing coflow
completion times under various network settings.

II. RELATED WORK

Flow-level scheduling: Existing scheduling schemes in
data center networks have extensively focused on flow-level
scheduling. Without deadline information, scheduling schemes
try to minimize flow completion times. To achieve such a
goal, DCTCP [10] adjusts sending windows based on the
level of congestions so that queues at switches remain short.
pFabric [6] adopts the shortest remaining size first strategy to
conduct priority-based scheduling and rate control. With flow-
level deadline information, PDQ [7] approximates earliest
deadline first strategy by permitting preemptive scheduling.
Nevertheless, improving flow level performance metric does
not imply optimizing coflow level performance. With respect
to maximizing the number of punctual coflows, it is likely
that although a large portion of flows belonging to a coflow
meet the deadline, the slowest flow still misses the deadline,
preventing the whole coflow from finishing on time. Lack of
coflow information, all the schemes discussed above cannot
guarantee coflow-level performance.

Coflow scheduling: Realizing the deficiencies of flow
scheduling, recent proposals such as Varys [3], Rapier [11] and
Aalo [9] try to integrate coflow semantics. Rapier [11] aims
to minimize the average coflow completion time through joint
scheduling and routing. Aalo [9] further schedules coflows
without prior knowledge. Varys [3] has separately designed
two set of strategies to minimize the average completion time
and the number of late coflows respectively. Although sharing
the same objective, the main difference between Chronos
and Varys lies in that instead of embracing a complicated
admission control mechanism, Chronos leverages multiplexing
to avoid starvation such that any coflow is no longer paused or
canceled. By combining priority-based scheduling and limited
multiplexing, Chronos is able to ensure that high priority
coflows can meet their deadlines and low priority coflows can
proceed continuously at the same time.

III. BACKGROUND AND MOTIVATION

We abstract data center fabric as a giant switch with non-
blocking internal data transmission. Each uplink is associated
with an ingress port of a sender’s network interface card, and
each downlink is associated with an egress port of an receiver’s
Top-of-Rack switch. This abstraction represents the majority
of current data centers, where congestion is free in the core

Deadline

(a) Flow-level (b) Coflow-level

Fig. 1. The difference between flow-level and coflow-level scheduling: the
flows belonging to the first coflow are in blue (diagonal fill), while the flows
of the second coflows are in green (solid fill). Under the smallest remaining
time first flow-level scheduling, no coflow can meet its deadline at time 2,
whereas one coflow can finish in time under coflow-level scheduling.

(SNZECN | Deadline D, D,
S1
S) 7777

L . !]

Time 1 2 3 1 2 3

(a) Completion time (b) Deadline

Fig. 2. The example to show that minimizing coflow completion times is
insufficient for deadline-driven scheduling: the average completion time of
the two coflows is minimized in Fig. 2(a), but one coflow misses its deadline
when it is possible for two coflows to finish in time as in Fig. 2(b).

but common on the edge, that is, on the uplinks and downlinks
[8]. Under such a network model, specific network topologies
[12], shed no influence on the design of scheduler. Besides,
dynamic routing [11] would bring no benefit since congestion
only occurs at edge links which cannot be bypassed.

Although some delay-insensitive applications have no spe-
cific deadlines, meeting deadlines are important for real-time
applications, such as web search and interactive machine
learning. For instance, the flows that transmit the relevant
data of the query response for a web search job constitute
a coflow. In a typical partition-aggregate model, these flows
are first generated by workers, then reduced to an aggregator.
Only after all the flows finish will the final search result be
constructed and sent back to users. This implies no matter how
quickly the first flow finishes, the response time of a query is
determined by the slowest flow in that bundle.

We next illustrate the advantage of coflow scheduling
through the following example. Consider the two coflows
shown in Fig. 1, each of which consists of a flow of size
1 and a flow of size 2. Both coflows must finish after 2 time
units, despite flows are bottlenecked on the uplinks with unit
capacity. It is clear to see that at most one coflow can meet
the deadline. Without coflow semantics, a flow-level scheme,
such as the smallest remaining size first strategy in pFabric,
would allocate bandwidth as in Fig. 1(a). As a result, neither
of the two coflows can finish in time. With coflow semantics, a
possible schedule is shown in Fig. 1(b), where flows belonging
to one coflow are prioritized. In this case, one coflow can meet
its deadline, while the other coflow is not slowed down.

The scheduling schemes to minimize coflow completion
times, however, are still insufficient. As shown in Fig. 2,
the deadline for the first coflow is 3, while the deadline
for the second coflow is 2. A schedule to minimize coflow

completion times would prioritize the second coflow since
its remaining time is smaller [3]. Indeed, the average coflow
completion time is only 2.25, but the second coflow misses its
deadline. In contrast, a deadline-driven strategy would allocate
enough bandwidth to coflows to finish just in time as shown
in Fig. 2(b): although the average completion time increases
to 2.5, both coflows successfully meet their deadlines.

IV. DESIGN

A. Scheduling Deadline-Driven Coflows

A coflow ¢ is a set of flows Z’? which sends data with

size sfj from port ¢ to port j of the virtual switch. Denote the
rate of ff at time ¢ as bj(t). c’s completion time, denoted
as ti, then needs to satisfy:

tr
k k -
/0 bi; () dt > s3; Vi, (1)

Namely, t; is determined by when the last flow of the
coflow finishes. c; must finish before dj, to satisfy SLAs. Our
objective is to maximize the total number of coflows meeting
their deadlines, which is equivalent to minimizing the number
of late coflows. The coflow scheduling problem is NP-hard
since it can be reduced to the concurrent open shop scheduling
problem [3] with the objective of minimizing the number of
late jobs. Although 2-approximate algorithms exist for offline
scheduling, the information of coflows is unavailable until it
arrives in the system in practice. In other words, our scheduler
needs to operate in an online fashion.

To accommodate as many active coflows as possible,
Chronos allocates each flow Z@- with the bare bandwidth,
whose value is bfj = sfj /di. This value merely ensures
that every single flow of a coflow finishes exactly at the
common deadline so that there would be more bandwidth
available for incoming coflows to transmit data. This is the
key to accommodating as many punctual coflows as possible.
Nevertheless, since network bandwidth is rather limited, even
allocating bare bandwidth might be infeasible due to harsh
bandwidth contention. In this case, we need to select a subset
of coflows to meet communication requirements. We next
present the architecture of our scheduling framework.

B. Architecture

Chronos adopts a central scheduler (shown in Fig. 3), which
acquires the information of a coflow once it arrives in the
system, namely, when all its data are ready for transmission.
Sender hosts are responsible for registering the essential infor-
mation to the scheduler, including which coflow a flow belongs
to, the size of a flow and the associated communication
deadline requirements. Note that Chronos gracefully degrades
to a flow-level scheduler when lacking some of the essential
information as discussed in Sec. IV-D.

When the network load is heavy or imbalanced, it is
probable that there exists no schedule to accommodate all
the coflows without missing their deadlines. Existing schemes
usually rely on admission control to select a subset of coflows

[_Coflow arrives Coflow departs™
¥
Whether

Remaining + NO +| [Multiplexed
bandwidth Query»>| can meet L3 I

deadline

(intormation) ES Weigns
information v Weights
Allocat
Update Update ackfillin
Chronos bandwidth

v }

[Sender [0 nachine Machine PiReceiver
[Sender [, {[Receiver]]

Chronos Chronos
Daemon Daemon (4

Fig. 3. The architecture of Chronos in a data center.

,

that can fit into the system without missing their deadlines
and reject all the remaining coflows [3]. The advantage of
such a scheme is that link bandwidth are all utilized by
coflows that can meet their deadlines. Nevertheless, since un-
selected coflows have to resubmit requests continuously, their
completion times could be significantly prolonged, leading to
unfairness and dissatisfaction of users. To make things worse,
some coflows may have to wait perpetually for other coflows
to finish, leading to severe starvation.

Instead, Chronos schedules coflows by adopting relaxed
priority scheduling with limited multiplexing. Since pure mul-
tiplexing raises coflow completion times [3], we prioritize
a subset of selected coflows to guarantee they can meet
deadlines, while making the unselected (multiplexed) coflows
share the residual bandwidth. We conceptually divide the
bandwidth B; on each port P; into two segments: N; is used
for normal data transmission of high priority coflows, while
R; is the reserved bandwidth used for multiplexing. The ratio
between the two segments is predefined by the scheduler, and
can be adjusted dynamically based on network status. We next
illustrate the scheduling algorithms of Chronos in detail.

C. Algorithms

For a coflow ¢, with the highest priority among all the
unscheduled coflows, Chronos tries to allocate the bare band-
width b}, for each flow fJ5 of this coflow. For a flow fJ,
if the idle bandwidth on both IV; and N; is larger than bfj,
the scheduler distributes the bandwidth to Z and updates the
remaining bandwidth on N; and N; (line 10 of Alg. 1). If
either IV; or N; does not has enough idle bandwidth, the
corresponding coflow cannot meet its deadline. We mark it as
a multiplexed coflow (line 6 of Alg. 1), and make it share the
reserved bandwidth with other multiplexed coflows in Alg. 2.

Chronos allocates the multiplexed bandwidth in proportion
to the bare bandwidth of each flow such that more urgent flows

can get more bandwidth.
k k
bi; o bi;
L out — L
Zj#kECM bij Z@CkECM bij

This process iterates for each flow (lines 2-6 of Alg. 2).
Finally, Chronos scans through each port and redistributes the

2

Win =

Algorithm 1 Chronos’s main algorithm
1: procedure SCHEDULER(cy)

2 multiplex <— TRUE

3 forall f; € c; do

4 cond;j <= > bf; > IDLE-IN(N;)

5: cond;; = Y, bf; > IDLE-OUT(N;)

6: if cond;; or cond;; then Cps = Cps U {cy}

7: return

8: multiplex < FALSE > Meet bandwidth requirements
9: for all ff; € c; do

10: bfj (t) sfj /d > Allocate bare bandwidth

return

11: procedure MAIN

12: Denote the set of multiplexed coflows as Cys

13: if a coflow arrives or finishes then

14: Sort all active coflows based on their priorities
15: for k=1: K do

16: SCHEDULER(cg) > Allocate bandwidth
17: for all multiplexed coflows do

18: DO-MULTIPLEX(cg)

19: fori=1:ndo
20: BACKFILLING(i) ©> Ensure work-conservation

remaining bandwidth to multiplexed coflows to make them
finish faster through a backfilling step (Alg. 3).

We do not restrict Chronos to any specific priority schemes,
such as the earliest deadline first [7] and the smallest effective
bottleneck first [3] strategies. The key principle is that coflows
are only temporarily multiplexed and would be reallocated
bare bandwidth whenever possible.

Algorithm 2 Chronos’s starvation avoidance algorithm
1: procedure DO-MULTIPLEX(cg)
22 for all ff; € ¢ do

bin(t) < win * IDLE-IN(R;)

bout (t) 4= Wout * IDLE-OUT(R;)

by (t) = min(bin(t), bou ()

CM = CM — {Ck}

AN

Algorithm 3 Chronos’s backfilling algorithm
1: procedure BACKFILLING(i)
2: while IDLE-IN(B;) > 0 do
for all k£, 7 do
b = min(IDLE-IN(B;), IDLE-OUT(B;))
bE; () = bE;(t) + b
Update flow rates and idle bandwidth

AN A

Since Chronos only reallocates bandwidth when coflows
arrive or depart as shown in Fig. 3, the scheduling procedure
is not frequently invoked. Henceforth, there will not be a
significant number of rate control messages exchanging be-
tween the central scheduler and end hosts. Furthermore, as
observed in production data centers, the number of concurrent

coflows running in a network range from tens to hundreds [3].
Therefore, the coflow database does not need to maintain too
much information, and the computation time of the schedule
algorithms will not become the performance bottleneck.

D. Property Analysis

1) Starvation free: Chronos strives to balance between
starvation freedom and deadline guarantee by adopting a
mixed strategy to combine priority-based scheduling and mul-
tiplexing. All the coflows are served as soon as the data to be
transmitted are ready. Once scheduled, a coflow is guaranteed
to get allocated a certain amount of bandwidth to transfer data
continuously instead of being stuck. Unlike the complicated
admission control mechanism, Chronos does not block or
discard any transmission. All coflows can keep on sending
data till they finish. In this way, Chronos guarantees that
the selected coflows can meet their hard deadlines, while the
unselected coflows will not be starved perpetually.

2) Work conserving: Even if all the active coflows can
finish on time, links should not be left under-utilized. In
other words, the bandwidth allocated to a flow should not be
bounded to its bare bandwidth. Instead, flows should only be
bottlenecked at their uplinks or downlinks. By allocating more
bandwidth to flows, they can not only meet their deadlines,
but also be able to finish as fast as possible. Consequently, the
coflow completion times also decrease. Chronos achieves work
conservation by further embracing a backfilling step to fully
utilize available bandwidth. Whenever there is idle bandwidth
on a port, Chronos will distribute the remaining bandwidth to
the flows traversing through this particular port. The bandwidth
reallocation procedure performs dynamically and adaptively
according to the real-time network status.

3) Graceful degradation: When none deadline information
is available, flows within a coflow follow the weighted fair
sharing strategy in Chronos: all the flows share the available
bandwidth proportionally since the deadlines can be viewed as
the same. We can further adopt a deadline estimation algorithm
to automatically assign deadlines to coflows based on the type
of the job a coflow belongs to. For coflows belonging to delay-
tolerate applications, we set a default deadline whose value is
considerably larger than other concurrent coflows.

To avoid starvation, we embrace a hybrid multiplexing
method in Alg. 2, with a knob to adjust the portion of
link bandwidth reserved for multiplexed coflows. If such a
knob equals to one, Chronos would gracefully degrade to a
pure multiplexing bandwidth sharing strategy. If the multiplex
factor equals to zero, Chronos would degrade to a pure
priority-based coflow scheduling. It is thus possible that some
coflows would get starved. In practice, we can either ensure the
multiplex factor is always positive, or further adopt an aging
mechanism to dynamically adjust the priority of coflows.

V. SIMULATION RESULTS
A. Methodology

1) Benchmark workloads: We scale down the practical
workloads to reflect coflow patterns observed in production

100
== Chronos

== pFabric

= TCP
75

50

Application throughput (%)

25

1.0x

1.5x
Deadline

2.0x

Fig. 4. Percentage of coflows that meet deadlines using Chronos in com-
parison to per-flow fairness and per-flow priority: the improvement factor of
Chronos over the other two schemes is up to 2.17x and 1.61 X respectively.

data centers [3]. The number of coflows ranges from 10 to
100, and the number of flows within each coflow (its width)
is between 1 and 50, with 60% of coflow’s width smaller
than 16. We use the empirical deadline settings as in [3]: a
coflow’s deadline is set to its minimum completion time in
an empty network multiplied by 1 + v where v € (0,1) is a
uniformly random number. There are 32 end hosts connected
to a non-blocking virtual switch through a 100 Mbps access
link. Coflows arrive in the network following a Poisson process
with rate varying from 0.1 to 0.8 in order to thoroughly
evaluate Chronos’s performance under different network loads.
Flows in a coflow are generated randomly between end hosts
with sizes following the long-tail distribution.

2) Schemes compared: The state-of-the-art flow scheduling
schemes can be classified into two major categories. One kind
of schemes employ the per-flow fairness strategy, such as TCP
and its many other variants [10]; another kind of mechanisms
adopts per-flow priority [6]. We select one most representative
scheme in each of the two categories for thorough evaluations.

TCP: The flows on a congested link equally share the avail-
able bandwidth, and achieve the max-min fairness. Switches
employ drop-tail queues with a fixed buffer size. Flows grad-
ually increase their sending rate until a back-off is triggered
by packet loss or time out. The initial TCP window size in
our experiments is set to 12 KB as in [6].

pFabric: By approximating the shortest remaining time
first strategy, pFabric achieves near-optimal flow-level perfor-
mance. We implement the ideal version of pFabric, which is
free from the inefficiencies caused by packet drops at switches,
imperfect load balancing or retransmissions. The performance
achieved thus guards above the performance of pFabric.

B. Overall Performance

We first examine Chronos’s performance in maximizing the
number of coflows that meet deadlines, which is defined as
the application throughput [7].

The three groups of results (Fig. 4) indicate the number
of coflows meeting the actual deadlines, 1.5x and 2x dead-
lines. From these results we can see that Chronos improves
the application throughput by 1.61x and 2.17x compared

1.0 - Chronos

- pFabric
TCP

0 2 4 6 8 10 12
Coflow Completion time (s)

Fig. 5. Coflow completion times using Chronos in comparison to per-flow
fairness and per-flow priority: Chronos reduces the average coflow completion
time by 28.9% and 57.7% when compared to pFabric and TCP, respectively.

to pFabric and TCP respectively. With looser performance
requirements, pFabric and TCP are able to catch up with
Chronos gradually. In addition, despite pFabric’s ignorance
to deadline information, its effectiveness in reducing flow
completion time helps itself to outperform TCP significantly.
Although our primary objective is not to minimize coflow
completion time, we show in Fig. 5 that Chronos can effec-
tively shorten coflows on average since the network is able
to accommodate more coflows simultaneously by allocating
the bare bandwidth to coflows. From Fig. 5, we can see that,
all the coflows are admitted into the network with no coflow
being halted perpetually. In contrast, Varys only admits less
than 80% of coflows on average as reported in [3]. This
is unacceptable for most deadline-constrained applications,
since not only the timeliness, but also the availability of the
corresponding service is sacrificed.

C. Impact of Network Load

Since the distributions of coflows sizes and widths are
generated based on the workloads collected from production
date centers, we keep them unchanged when we measure
Chronos’s performance under different network loads. The
knot to control is the rate of the coflows’ arrival process. The
corresponding application throughput and coflow completion
times of different schemes are shown in Fig. 6(a) and 7(a).
As predicted, with more coflows coming into the network, the
bandwidth becomes more and more scarce, leading to severer
competition among flows in different coflows. Since the size
and width distributions of coflows keep constant, the amount
of bandwidth needed by each coflow to catch up its deadline
is basically constant. When the network bandwidth is used up
by active coflows, the arrival of more coflows only leads to
the decrease of application throughput. The average coflow
completion time would increase accordingly.

D. Impact of Multiplexing

To avoid starvation, we reserve a fixed fraction (i.e., mul-
tiplex factor) of bandwidth on each link for multiplexed
coflows to share. Through Fig. 6(b), we can see that two flow-
level schemes is insensitive to the multiplex factor. However,
when more bandwidth is reserved, there is less bandwidth
available to guarantee that high-priority coflows can meet

—
(=
(=]

== Chronos
== pFabric
— TCP

i

[N}
W

Application throughput (%)

75
50 I
0.2 0.4

Netwofk Load
(@)

100
== Chronos
== pFabric
75 = TCP

o4
[}

Application throughput (%)

[N
W

kb

Multiple.x Factor
(b)

i

Fig. 6. The application throughput for varying network loads and extents of multiplexing. v equals to 0.1 when examining the impact of network loads; A
equals to 0.4 when analyzing the influence of multiplexing. Chronos achieves higher application thoughput under all the settings. The advantages of Chronos
become more significant with heavier network loads, but the performance gains reduce when too much bandwidth is reserved for multiplexing.

2 == Chronos
2 10 @ pFabric
= = TCP
= 8
S
l; 6
0.2 0.4 0.8

Netwofk Load
(@)

2 == Chronos
£ 10 @m pFabric
= = TCP
= 8
.S
= 6
£,
0.4
Multiplex Factor

(b)

Fig. 7. The average coflow completion times of different schemes under varying network loads and extents of multiplexing: flow-level schemes are not
affected by the extent of multiplexing, while Chronos’s performance degrades with the increase of multiplex factor.

their deadlines. As a result, Chronos’s application throughput
decreases with the increase of multiplex factor.

In Fig. 7(b), the average coflow completion time increases
with larger factors. However, such growth decreases with
larger multiplex factors. With a larger factor, less coflows can
finish in time, leading to larger average completion times.
Nevertheless, the unselected (multiplexed) coflows can get
more amount of traffic, and thus are significantly sped up.
An inflection point exists when the decrease of multiplexed
coflows’ completion times just offsets the increase of non-
multiplexed coflows’ completion times.

VI. CONCLUSION

In this paper, we have studied the deadline-driven coflow
scheduling problem with the objective of minimizing the
number of tardy coflows. Different from meeting each flow’s
deadline in isolation, whether a coflow can finish on time
depends on coordinations among all its constituent flows. To
efficiently schedule coflows in an online manner, we have
designed a hierarchical scheduling mechanism, Chronos, to
allocate sufficient bandwidth for coflows to just finish on
time. To avoid starvation, we embrace limited multiplexing to
make every flow proceed continuously, while not hurting the
guaranteed performance of high-priority coflows. The potential
bottleneck at Chronos is resolved by only rescheduling when
coflows arrive or depart. Experiment results acquired from re-
alistic simulations demonstrate that Chronos effectively meets
coflow deadlines under various network status.

REFERENCES

[1] R. Kohavi and R. Longbotham, “Online experiments: Lessons learned,”

Trans, IEEE Computer, vol. 40, no. 9, pp. 103-105, 2007.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop

distributed file system,” in Proc. IEEE Symposium on Mass Storage

Systems and Technologies (MSST), 2010, pp. 1-10.

[3] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with Varys,” in Proc. ACM SIGCOMM, 2014, pp. 443-454.

[4] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow:
distributed, low latency scheduling,” in Proc. ACM Symposium on
Operating Systems Principles (SOSP), 2013, pp. 69-84.

[5] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J. Franklin, and
I. Stoica, “The power of choice in data-aware cluster scheduling,” in
Proc. USENIX OSDI, 2014, pp. 301-316.

[6] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pFabric: Minimal near-optimal datacenter transport,”
in Proc. ACM SIGCOMM, 2013, pp. 435-446.

[7] C.-Y. Hong, M. Caesar, and P. Godfrey, “Finishing flows quickly
with preemptive scheduling,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 127-138, 2012.

[8] V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar, C. Kim, and
A. Greenberg, “EyeQ: Practical network performance isolation at the
edge,” in Proc. USENIX NSDI, 2013, pp. 297-312.

[9] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior

knowledge,” in Proc. ACM SIGCOMM, 2015, pp. 393-406.

M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-

hakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),” in

Proc. ACM SIGCOMM, 2010, pp. 63-74.

Y. Zhao, K. Chen, W. Bai, M. Y. USC, C. Tian, Y. Geng, Y. Zhang,

D. Li, and S. Wang, “Rapier: Integrating routing and scheduling for

coflow-aware data center networks,” in Proc. IEEE INFOCOM, 2015,

pp. 424-432.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data

center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,

vol. 38, no. 4, pp. 63-74, 2008.

[2

—

[10]

(1]

[12]

