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Abstract—As a practical paradigm designed to involve large
numbers of edge devices in distributed training of deep learning
models, federated learning has witnessed a significant amount of
research attention in the recent years. Yet, most existing mech-
anisms on federated learning assumed either fully synchronous
or asynchronous communication strategies between clients and
the federated learning server. Existing designs that were partially
asynchronous in their communication were simple heuristics, and
were evaluated using the number of communication rounds or
updates required for convergence, rather than the wall-clock time
in practice.

In this paper, we seek to explore the entire design space
between fully synchronous and asynchronous mechanisms of
communication. Based on insights from our exploration, we
propose PORT, a new partially asynchronous mechanism de-
signed to allow fast clients to aggregate asynchronously, yet
without waiting excessively for the slower ones. In addition, PORT
is designed to adjust the aggregation weights based on both
the staleness and divergence of model updates, with provable
convergence guarantees. We have implemented PORT and its
leading competitors in PLATO, an open-source scalable federated
learning research framework designed from the ground up to
emulate real-world scenarios. With respect to the wall-clock time
it takes for converging to the target accuracy, PORT outperformed
its closest competitor, FedBuff, by up to 40% in our experiments.

I. INTRODUCTION

As one of the emerging distributed learning paradigms,
federated learning (FL) [1] has witnessed a tremendous
amount of research attention in the recent research literature.
Compared to conventional distributed machine learning, there
are several unique features in federated learning that motivated
the recent research attention. First, as edge devices (clients)
collaboratively train a global model with their locally gener-
ated data, it is generally assumed that data is not independent
and identically distributed (i.i.d.). Second, as there may exist
a large number of clients in a federated learning session, only
a small subset of clients are selected in each communication
round between the clients and the FL server. On the other
hand, federated learning inherits the same research objective
as conventional distributed machine learning: both aim to
minimize the amount of time to complete training, measured
by the wall-clock time needed to converge to a target accuracy.

It is worth noting that most existing research literature on
federated learning, starting from McMahan et al.’s seminal
work on the federated averaging algorithm [1], assumed that
each communication round between the client and the server
is fully synchronous, in that the server would wait for all
the selected clients to complete local training and report their
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model updates before aggregation takes place. Such a design
has been utilized by most existing works as it is simple yet
effective, and is similar to the so-called Bulk Synchronous Par-
allel mechanism in the realm of distributed machine learning
within the same cluster. However, it is intuitive to observe that
the performance — in terms of the wall-clock time to converge
to a target accuracy — of such a synchronous communication
mechanism may degrade if some clients progresses with a
much slower pace than the others in their local training, since
the server needs to wait for these stragglers, a commonly used
term in conventional distributed machine learning.

In this context, it is natural to introduce an asynchronous
communication paradigm, where the server does not need to
wait for all its selected clients to report their model updates,
and chooses to proceed with the aggregation process as soon
as the model update from one client arrives. Such a design has
been first proposed by Xie et al. [2], called FedAsync, where
the server immediately updates the global model whenever it
receives a client’s model update.

However, in the case where the distribution of client speeds
is heavy-tailed, one may easily conceive pathological scenarios
where fast clients are rapidly replaced by other fast clients with
updated global models, while much slower clients make very
little progress based on global models that are becoming out
of date. In conventional distributed machine learning with pa-
rameter servers, such pathological scenarios were avoided by
the introduction of bounded staleness in the stale synchronous
parallel mechanism (SSP) [3]. It is straightforward to design
a similar mechanism in federated learning that is staleness-
aware, where the server waits for much slower clients that are
beyond a pre-determined staleness bound.

We argue, however, that the entire design space between
fully synchronous (corresponding to BSP in distributed ma-
chine learning) and asynchronous with staleness bounds (cor-
responding to SSP) has not yet been rigorously explored and
experimental evaluated in the existing literature. There exists
a number of factors at play in such a design space, reflected
in the following basic questions. First, what is the minimum
percentage of clients the server should wait for before it com-
mences its aggregation process? The more clients being waited
for, the more synchronous the communication mechanism
becomes. Second, what should the staleness bound be? The
more relaxed the staleness bound is, the more asynchronous
the design is. Last but not the least, when a server aggregates
the model updates it receives so far, which are inherently based
on different global models, how should the server allocate
the aggregation weights to each client? In extreme cases, the



server may choose to assign an aggregation weight of zero to
extremely slow clients, effectively reducing the relevance of
their local training.

Unfortunately, heuristics designed in existing works in the
literature reflected point solutions in such a design space, and
in several cases failed to motivate their design choices. In
particular, most existing works used either the number of gra-
dients, updates, or communication rounds before convergence
as their performance metric, which failed to reflect the actual
wall-clock time it takes to converge to a target accuracy. This
is because each update or communication round may take a
substantially different amount of time. As such, it is not clear
what the best possible trade-off between conflicting design
decisions is, and what the sweet spot is in the entire spectrum
between synchronous and asynchronous mechanisms.

In this paper, we seek to experimentally explore such a
design space in a real-world scalable FL research framework,
called PLATO, designed from the ground up to accurate
measure the wall-clock time involving all the factors at play.
With insights obtained from our experimental evaluations, we
propose PORT1, a new mechanism that navigates the tradeoffs
involved in the design space with best practices.

Highlights of our original contributions in this paper are
three-fold:

First, in PORT, the server incorporates a push-pull mecha-
nism: it allows fast clients to aggressively report their model
updates, and aggregates them as soon as a minimum percent-
age of clients arrive. Yet, it does not need to wait for stale
clients after the staleness bound has been reached; instead, it
aggressively pull these stale clients with an urgent notification.
Clients that receive such urgent notifications are required to
report immediately after completing the current training epoch.

Second, inspired by existing adaptive aggregation mecha-
nisms, we propose to assign lower aggregation weights to
clients that are more stale and more divergent in their model
updates. The intuition behind this design is that stale clients
are based on earlier versions of the global model, and their
model updates are therefore of lower quality and less relevant.
Theoretically, we show that our mechanism enjoys a conver-
gence guarantee.

Finally, the design of PORT is based on an array of exper-
imental evaluations using our real-world FL framework, with
an emphasis on reproducible results when comparing with the
state-of-the-art, using the wall-clock time as our performance
metric rather than the number of communication rounds. As
asynchronous paradigms are inherently designed to minimize
the wall-clock time, this is the only suitable way of evaluating
competing designs. With a variety of datasets and models, we
show that PORT is able to outperform all of its competitors in
the literature, and by a margin of up to 40% over its closest
state-of-the-art competitor in the literature.

The remainder of this paper is organized as follows. In Sec-
tion II, we first present necessary preliminaries and highlights

1PORT is a strong, sweet, typically dark red fortified wine, originally from
Portugal. It represents a sweet spot in our design space.
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Fig. 1. Synchronous vs. asynchronous mode of operation in federated
learning. Naturally, if the server operates in fully asynchronous mode, there
is no need to wait for slower clients to report before the aggregation process
to commence.

of related work. In Section III, we introduce an initial array
of experimental evaluations, showing how the design space is
to be explored with a range of tuning knobs to be adjusted. In
Section IV, inspired by our preliminary experimental results,
we present PORT, our proposed mechanism that arbitrates the
tradeoff in the design space, enjoys a theoretical convergence
guarantee, and achieves the sweet spot in the spectrum be-
tween two extremes of communication mechanisms. In Sec-
tion V, we first introduce new mechanisms we designed and
built to simulate wall-clock time and to substantially improve
reproducibility in PLATO, and then present an additional set of
experimental results to validate the effectiveness of our design
as compared to leading competitors such as FedAsync and
FedBuff. Finally, we conclude the paper with some further
remarks in Section VI.

II. PRELIMINARIES AND RELATED WORK

The synchronous mode of operation in federated learning
(FL) needs no introduction: most existing work in the literature
makes such an assumption: the server needs to wait for all the
clients it has selected in the current communication round (or
round) to report their model updates, before it proceeds with
the aggregation process. Just like Bulk Synchronous Parallel
parameter servers in the conventional design of distributed
machine learning on the same cluster, such synchrony across
selected clients in the same round is simple to implement and
enjoys proven convergence properties.

In practice, however, given a large number of clients in an
FL session, it is natural to assume client heterogeneity: differ-
ent edge devices as clients have a wide variety of computing
capabilities, and as such their local training performance varies
significantly. In fact, for the same amount of computation, their
training times may follow a heavy-tailed distribution (such
as Zipf distribution) rather than normal distribution, where a
small proportion of clients are much slower than the norm.
These slow clients were known as stragglers in distributed
machine learning, and they motivated operating the training
session in asynchronous mode.

Asynchronous federated learning. Figure 1 illustrates
the intuitive benefits of deploying asynchronous federated



learning. In asynchronous mode, the server only needs to
wait for a subset of clients to report before proceeding with
aggregation processing. In the extreme case, the server only
needs to wait for one client — who is the first to complete
local training in a round — before proceeding. Such a fully
asynchronous mode of operation was the essential idea of
Asynchronous federated optimization (FedAsync) proposed by
Xie et al. [2]. It proposed to use a mixing hyperparameter α,
which is deployed on the server to determine how much weight
should be assigned to the newly arrived model update from
the fastest client during the aggregation process.

With such a fully asynchronous mode in operation, the
slowest clients are no longer able to slow down the aggregation
process in their role as stragglers in each round. However,
when they eventually finish local training, their model updates
may be based on a global model in a much earlier round
than faster clients; in other words, these clients may become
stale. Stale clients are known to affect model convergence in
distributed machine learning: the stale synchronous parallel
(SSP) mechanism [3] proposed to bound such staleness by
asking the server to wait for slow clients who exceed a certain
staleness threshold before proceeding with processing.

Unlike SSP, FedAsync [2] did not make an attempt to ask
the server to wait for slow clients. Instead, it proposed to use
a staleness function to compute the mixing hyperparameter α
using the staleness of clients as input. Intuitively, the more
“stale” a client is, the lower weight assigned to its model
weights when they are aggregated to the global model. With
such a simple design, FedAsync showed that it can solve
regularized local problems to guarantee convergence, and has
been used in later proposals as a benchmark when studying
the performance of asynchronous federated learning.

Alternatives to asynchronous design. There exist several
recent proposals in the literature that provided viable design
alternatives to the asynchronous mechanism in FedAsync.
Similar to such a staleness function in FedAsync, Chen et
al. [4] proposed that clients that are more stale should be
assigned a lower weight when their models are considered
during the server aggregation process. FedSA [5] proposed a
two-stage FL training process, where a large number of local
training epoches, say, 20–50, are used in the initial stage of
training for the sake of reducing the number of rounds, and
then use a smaller number of local epoches in the convergence
stage when the global model is starting to converge. The
number of local training epoches is adjusted every round with
an elaborate mechanism based on a proprietary definition of
client staleness.

Similarly, Chen et al. [6] proposed Asynchronous Online
Federated Learning (ASO-Fed), which operates in fully asyn-
chronous mode where the server commences its aggregation
process as long as it receives the report from the fastest client.
It further augmented FedAsync with an elaborate mechanism
of feature representation learning on the server, in order to
address potentially negative effects on model performance due
to asynchronous aggregation.

Semi-asynchronous designs. Wu et al. [7] proposed a semi-

asynchronous federated learning mechanism, called SAFA,
that introduced a hyperparameter called lag tolerance to rep-
resent the staleness of a client, and discarded local training re-
sults for those clients who are considered too stale according to
such a lag tolerance setting. In SAFA, the semi-asynchronous
server waits for a certain pre-specified percentage of clients
before aggregation commences, and as such it should not
be considered a fully asynchronous mechanism where ag-
gregation starts with only one client reporting. Similarly,
FedBuff [8] proposed buffered updates, where the server will
wait for and buffer the updates from a minimum number
of clients before aggregation. As proposed, both SAFA and
FedBuff worked as a “hybrid” between fully asynchronous
and synchronous modes of operation.

Synchronous designs that accommodated client hetero-
geneity. FedProx [9] was one of the first proposals that
attempted to accommodate client heterogeneity by training
for a smaller number of local epoches on slower clients.
Though FedProx essentially operates in the synchronous mode,
it was shown that such tolerance for partial work on the
slower clients did not negatively affect convergence behaviour.
A practical challenge, however, was that it was difficult to
compute the number of local epoches that should be carried
out on a particular client selected by the server, without a
priori knowledge of the client’s computing capabilities. Given
the fact that a small subset is chosen from a much larger
number of clients in practice, it is unrealistic to assume that
each client’s computing capabilities can be estimated a priori
accurately. Choosing to work in the asynchronous mode offers
a much simpler design with no such assumptions in place.

Open challenges. Essentially, existing work in the literature
on asynchronous federated learning can be considered as point
solutions, with each heuristic algorithm proposed representing
one point of operation in the multi-dimensional design space
in which potential designs can operate. The design choices and
tradeoffs made in existing works — including hyperparameter
settings — may not be well motivated, and the effectiveness of
existing design choices were mostly illustrated using empirical
evaluation.

Unfortunately, most existing works failed to use the wall-
clock time elapsed since the start of a federated learning
session to evaluate their proposed mechanisms. Instead, the
number of communication rounds is most often used. Since
asynchronous processing may advance the communication
round index whenever a single client reports at the server,
it is no longer a viable performance metric for performance
evaluations, unlike synchronous federated learning. In rare
cases, such as FedFA [5], where the wall-clock time was used
for evaluation, it was not clear how client heterogeneity was
simulated, how many clients were selected in each round, and
what distributions were used for their training performance.
As a result, without access to its source code, it would be
difficult to reproduce its reported results.



III. DESIGN SPACE AND MOTIVATING OBSERVATIONS

Though a more detailed introduction to an open-source im-
plementation of our FL testbed will be deferred to Section V,
we first show several motivation experiments to chart the
design space for existing and potentially new asynchronous
FL mechanisms.

Experimental settings. Our initial set of experiments in-
volves benchmark FL sessions, involving 100 clients that use
the MNIST dataset to train an LeNet-5 model. This benchmark
model is typically straightforward to train in a centralized
training session, but due to non-i.i.d. data distributions in the
federated learning context, training can be much slower to
converge. In our experiments, the Dirichlet distribution with
a concentration parameter of 0.8 is used to simulate the non-
i.i.d. distribution.

Naturally, the asynchronous mode of operation is most
suitable in the situation where a small number of clients are
much slower than usual, forming a heavy-tailed distribution
of local training speeds. In our testbed, we simulate such a
situation by randomly generating the length of idle periods
after each epoch is trained at a client, drawing from the Zipf
distribution with parameter s = 1.7, and capped at a maximum
length of 60 seconds.

Our initial set of experiments was conducted on Google
Colab Pro+, with NVIDIA Tesla P100 GPU and 54.8 GB of
main memory. The server selects 20 clients for training in each
round (in the synchronous mode).

Minimum number of clients required. What are the
most influential hyperparameters in the design space for asyn-
chronous federated learning? The first we wish to experiment
with is the minimum number of clients required to report
before the server starts to aggregate these clients. At one
extreme, when the minimum number is 1, the server operates
in fully asynchronous mode: whenever a client arrives, it
will be aggregated immediately without further delays. As
examples, FedAsync [2] and ASO-Fed [6] proposed to operate
in fully asynchronous mode. At the other extreme, when the
minimum number of clients is the same as the number of
clients selected in each round, the training session degener-
ates to the synchronous mode of operation in conventional
federated averaging [1]: the server waits for all the selected
clients to report before aggregation commences.

As we vary the number of minimum clients required before
the server starts aggregation, we measure the elapsed wall-
clock time, in seconds, as a critical performance metric. As we
can immediately observe from our results, shown in Fig. 2a,
the fully asynchronous mode of operation, which requires only
one client to arrive before aggregation, failed to converge. This
is due to the observation that, with only 600 samples utilized
at each client, the server would repeatedly aggregate training
results that used samples at the fast clients; and when results
from much slower clients eventually arrive, they are based
on models that were awfully out of date. Our non-i.i.d. data
distribution further exacerbates the situation.

At the other extreme, synchronous FL did manage to
converge, but over a much longer period of time (803 seconds).

This reflected the well-known straggler problem, where the
server needs to wait for several much slower clients in each
round. It turns out that there was indeed a “sweet spot”: in
our experiments, aggregating a minimum of 5 clients fared
the best: only 204 seconds were needed to converge to our
target accuracy of 96%. But even if the server waited for 15
clients before aggregating them, training still converged in 236
seconds — not waiting for the last 5 clients made a world of
difference!

The staleness bound. It has been known in the stale
synchronous parallel mechanism (SSP) [3] that convergence
can be guaranteed if stale clients beyond a certain bound
are waited for during the aggregation process. However, it
is not clear how different bounds of staleness would affect
the amount of time it takes to converge. Intuitively, we may
not wish to be too aggressive waiting for clients that are only
slightly behind; but on the other hand, we may also not wish
to accommodate clients that are too stale, such that the models
they were based on were severely out of sync with most
others. Shown in Fig. 2b, our initial experimental results on
the MNIST dataset (with the number of minimum clients set to
5) appeared to have confirmed our intuition, in that there may
indeed be a “sweet spot” in the staleness bound, and it was
10 in our initial experiments. The difference in performance
is quite substantial: to reach a target accuracy of 96%, 758
seconds were needed with a staleness bound of 1, while only
216 seconds were needed with a staleness bound of 10.

Design space. From our preliminary experiments, it became
obvious that multiple dimensions exist in the design space
for asynchronous FL. In addition to the minimum number
of clients required and the staleness bound, the design of a
staleness-aware aggregation algorithm — with weights ad-
justed according to client staleness — represents another
dimension. Conceivably, there exists an optimal region in
such a multi-dimensional design space that leads to the best
possible convergence behaviour in asynchronous FL. Yet,
all the existing works only proposed point solutions in the
design space, without considering how optimal they were.
For example, FedAsync [2] did not impose any staleness
bounds, and required a minimum of just one client only before
aggregation. Our experiments suggested that it may not be
operating in the optimal region. Fig. 2c illustrated where the
operating points several existing solutions — FedAsync [2],
SSP [3], FedBuff [8], ASO-Fed [6], and SAFA [7] — were
located in the design space.

IV. PORT: DESIGN AND ANALYSIS

We are now ready to propose the design of PORT, a new
algorithm that seeks to operate in the best possible region in
the design space for asynchronous federated learning. Upfront,
as we have been abundantly clear, PORT’s design objective is
to minimize the wall-clock time for a FL session to converge
to a target accuracy, rather than the number of rounds. The
upshot in PORT’s design is its new aggregation algorithm:
rather than aggregating clients based on their percentage of
samples as in federated averaging, PORT’s design focuses on
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Fig. 2. Asynchronous vs. synchronous federated learning: comparisons and design space.

identifying influential factors that represent the staleness of
clients; once they are identified, PORT is designed to discount
the aggregation weights of stale clients accordingly.

A. Staleness: Influential Factors
It is natural to assume that much slower clients — who

received the global model from the server several rounds ago
— would become stale, and its model update may not be of
high quality during the aggregation process. In fact, such a
model update on a stale global model may even interfere with
the approximate consensus from most other clients, and slow
down the convergence process. Intuitively, we should reduce
the weight assigned to these stale clients during aggregation.

But such an intuition raises an important question: what are
the most important influential factors that best represent the
staleness of a client’s model update?

The staleness discount. The client staleness, defined as
the number of rounds that elapsed since the last time a client
received the global model from the server, arises as a natural
choice: the more stale a client is, the more discounted its
aggregation weight should become. Since PORT synchronously
waits for clients that exceed the staleness bound, the client
staleness will always be lower than such a bound. More
formally, if τ is the current round at the server, and τk is the
round that a reporting client k last received its model from
the server, client k’s staleness, Sk, is then τ − τk. We adopt
the following staleness function that computes the staleness
discount, which shall be used for discounting the aggregation
weights:

skτ = α · Ω

Sk + Ω
(1)

where Ω is the staleness bound, defined formally as:

Definition 1 (Staleness bound). With the staleness bound of
updates, Ω, the staleness Sk = τ − τk of any reporting client
k follows Sk ≤ Ω.

Since Sk is upper bounded by Ω, the staleness discount skτ
is lower bounded by 0.5. α is considered a hyperparameter,

serving as a tuning knob to control how significant the
staleness discount should be in the aggregation process.

The interference discount. An important question at this
point is: is there another influential factor that represents the
staleness of client updates well?

Naturally, the result of server aggregation in the previous
round, i.e., wτ − wτ−1 where wτ denotes the parameters
of the global model in the τ -th round, represents the general
consensus of selected clients in that round. In the current round
τ , consider a client, k, who just reported a weight update
∆k
τ . Intuitively, if ∆k

τ interferes significantly with the general
consensus wτ −wτ−1, client k’s update may not be of high
quality and may need to be discounted during aggregation.

Mathematically, there are two ways of quantitatively eval-
uating a similarity measure between two vectors. One can
compute the dot product between ∆k

τ and wτ −wτ−1, which
represents both the magnitude and the angle; alternatively, one
can compute the cosine similarity instead, which represents the
angle only.

In PORT, we choose to compute cosine similarity, denoted
as Θ, to quantitatively evaluate interference. The lower Θ is,
the less similar the two vectors are. Since −1 ≤ Θ ≤ 1, we
normalize it to [0, 1] by computing (Θ + 1)/2 instead. The
interference discount is therefore defined as:

Θk
τ = β ·

Θ
(
∆k
τ ,wτ −wτ−1

)
+ 1

2
(2)

where Θ(A,B) is the cosine similarity between the two
vectors A and B. Similar to the staleness discount, we
introduce a hyperparameter β, serving as another tuning knob
to control how substantial the interference discount should be.

With both influential factors incorporated as discounts, and
assuming that each client k performs E training epochs based
on its local dataset Dk, the aggregation weight for each client
will then be computed as:

pkτ =
|Dk|
|D|

(
skτ + Θk

τ

)
(3)
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Fig. 3. A fast client, A, reports its updates in time for aggregation, as one
of the minimum number of clients that the server waits for in this round. In
contrast, a slow client, B, has just exceeded its staleness bound. The server
sends an urgent notification to B and waits for its update after it finishes its
current epoch of training.

where D is the set of all data samples used in the set of
reporting clients, K, in this round. After normalizing all pkτ
such that their sum becomes 1, the aggregation mechanism at
the server can then be formulated as:

wτ+1 =
∑
k∈K

pkτw
k
τ (4)

B. Urgent Notifications and the Push-Pull Mechanism

In PORT’s design, we recognize that the aggregation algo-
rithm alone may not achieve the best possible performance
when it comes to the wall-clock time, rather than the number
of rounds. This is due to the fact that clients exceeding the
staleness bound must be waited for, and with a heavy-tailed
distribution of local training speeds, a small number of much
slower clients may become “stragglers,” increasing the amount
of time to converge to the target accuracy.

To mitigate the negative effects of these stragglers, the
server in PORT sends urgent notifications to all clients be-
yond the staleness bound Ω. Upon receiving such an urgent
notification, a client will not proceed to the next epoch of local
training; instead, it sends its local model as soon as the current
training epoch finishes.

With such a design, in addition to clients pushing their
models to the server as in conventional FL mechanisms, PORT
allows the server to proactively pull the current models from
the client using urgent notifications. This becomes handy when
the server needs to wait for slow clients: rather than waiting
for all local epoches to finish on a slow client, the server only
needs to wait for the current epoch.

Keep in mind that both the minimum number of clients,
discussed at length in Section III is still applicable in PORT.
The server always waits for a minimum number of clients
to report; but with the push-pull mechanism in place, it will
also check whether any clients exceed the staleness bound.
If so, they will each receive an urgent notification from the

server. These urgent notifications introduce one more round-
trip between the server and the stale clients: the clients will
send their current models after they finish their current epoch
of training, and the server waits for all stale clients to report
before commencing its aggregation process including all the
reporting clients in this round. Fig. 3 illustrates how the server
waits for a push from a fast client, A, and pulls the update
proactively from a slow client, B.

C. Convergence Analysis

To analyze PORT’s convergence behavior, let us consider
the following theoretical context. In each round τ ∈ T
where T denotes the total number of rounds, the server
selects K ′ clients from C clients. Each client k performs
E training epochs based on its local dataset Dk and the
model, wk

τk , that it receives from the server in round τk.
For any local training epoch j ∈ [0, E], the local model
wk
τk,j+1 is obtained through optimizing wk

τk,j by using SGD
with a batch size of B and a learning rate of ηjl . This can
be formulated as wk

τk,j+1 = wk
τk,j − η

j
l g(wk

τk,j) where the
gradient g(wk

τk,j) = Ofk(wk
τk,j , D

k). Once K clients have
reported, the server commences the aggregation process.

In this context, our convergence analysis is conducted under
the following assumptions, which are commonly used in
previous works on the analysis of federated learning.

Assumption 1 (Smoothness). Each objective function fk of
the client k is L-smooth. Thus its derivatives are Lipschitz
continuous with constant L, i.e., ‖ Ofk (w) − Ofk (w′) ‖≤
L ‖ w −w′ ‖.

Assumption 2 (Unbiased local gradient). Eξ [fk (w, ξ)] =
Ofk (w), where w denotes trainable parameters.

Assumption 3 (Uniformly bounded local gradient). The ex-
pected squared norm of stochastic gradients is uniformly
bounded, i.e., E ‖ Ofk (w, ξ) ‖2≤ G2 for k = 1, . . . ,K.

Assumption 4 (Bounded local gradients). Let ξ be sampled
from the k-th device’s local data uniformly at random. The
variance of stochastic gradients in each device is bounded as
Eξ ‖ fk (w, ξ) − fk (w) ‖2≤ σ2

k for k = 1, . . . ,K. Then, we
define σ2

l :=
∑K
k=1

|Dk|
|D| σ

2
k.

Assumption 5 (Bounded gradient divergence). For any client
k and the parameter w, we define δk as an upper bound of
‖ fk (w)− f (w) ‖2, i.e., ‖ fk (w)− f (w) ‖2≤ δ2k. Then, we
define δ2g :=

∑K
k=1

|Dk|
|D| δ

2
k.

In essence, we are solving a generic optimization problem in
federated learning, but the updates in the server aggregation
process contain various gradient delays, i.e., Eq. (4). PORT
can be formulated as an asynchronous aggregation problem
with buffered updates, which was previously discussed in
FedBuff [8]. PORT’s push-pull mechanism with urgent no-
tifications also guarantees a staleness bound — as defined
in Definition 1 — to client updates. In addition, we mathe-
matically introduce a staleness discount by utilizing a client’s



staleness to modulate its weights on a per-gradient basis. With
the interference discount, we have Lemma 1 on the weight for
each gradient.

Lemma 1. Given the hyperparameters of staleness and in-
terference discounts, α and β, the aggregation weight pkτ for
each gradient can be bounded by pkτ ∈

[
α
2 dk, (α+ β) dk

]
where dk = |Dk|

|D| .

Without loss of generality, we ignore the denominator term
in Lemma 1 because it does not affect the proof of conver-
gence. We can obtain PORT’s convergence rate as follows:

Theorem 1 (Convergence rate). Following Assumptions 1 to
4 and Lemma 1, PORT’s convergence rate is formulated as:

1

T

T−1∑
τ=0

E ‖ Of(wτ ) ‖2≤ 2
(f(w0)− f(w∗))

φ (E)TK

+ 6K (α+ β)
2
λ(d)L2Eψ (E)

(
K2Ω2 + 1

)
σ2

+ L
ψ (E)

Kφ (E)
(α+ β)σ2

l

(5)

where λ(d) =
∑K
i=1 d

2
i , φ (E) =

∑E
j=1 η

j
l , ψ (E) =∑E

j=1

(
ηjl

)2
, and σ2 = (α+ β)σ2

l + (α+ β) δ2g +G2.
Also, to achieve the convergence upper bound, the relations

of K and ηl should follow:

4 (α+ β)

α2λ (d)
Kηjl ≤

1

L
(6)

Proof. Following the commonly used convergence proof pro-
cedure in federated learning methods, such as [8] with the
non-convex objective function, our proof begins by exploiting
the smoothness assumption 1, thereby setting the upper bound
of f (wτ+1) to:

f (wτ+1) ≤f (wτ )−
∑
k∈K

pkτ 〈Of (wτ ) ,4τk〉

+
L

2
‖
∑
k∈K

pkτ4τk ‖2
(7)

where 4τk =
∑E
j=1 η

j
lOfk

(
wkτk,j

)
.

Then, as presented in Eq. (4), PORT computes the staleness
discount for each gradient. It introduces a new aggregation
algorithm that represents a more general case than FedBuff [8],
which utilized equal weights in the aggregation. To be more
specific, we show a sketch of our proof in three parts.

First, we obtain the upper bound for three important compo-
nents. Based on Assumptions 3, 4, 5 and Lemma 1, we bound
the expectation of stochastic gradient E ‖ Ofk

(
wkτk,j , D

k
)
‖

of client k by σ2 = (α+ β)σ2
l + (α+ β) δ2g +G2. Then, by

using Assumption 1 and adding a zero term in the decom-
position, we prove that the upper bound for staleness-aware
gradient divergence E ‖

∑K
k=1 p

k
τ

(
Ofk (wτ )− fk

(
wkτk

))
‖2

is 6K
∑K
k=1

(
pkτ
)2∑K

k=1 L
2Qψ (E)

(
K2Ω2 + 1

)
σ2. Finally,

we bound the E ‖
∑
k∈K p

k
τ4τk ‖2 based on the Lemma 1

and Assumption 5.

Second, after introducing these derived components to
Eq. (7), we reorganize the equation to get the specific up-
per bound for E [f (wτ )]. To remove the term containing
E ‖ Ofk

(
wk
τk

)
‖2, we tend to make the upper bound of its

coefficient to 0, i.e., −K2
(∑K

k=1

(
pkτ
)2)

+
LK2E(ηjl )

2

2 pkτ ≤ 0.
Thus, based on Lemma 1, we obtain Eq. (6).

Finally, with the simplified R.H.S. in Eq. (7), we sum up τ
from 1 to T and rearrange the equation to obtain Eq. (5).

Based on Theorem 1, we have Corollary 1:

Corollary 1. Following the convergence rate in Theorem 1,
we set the learning rate ηl to be a constant value that satisfies
the condition in Eq. (6), specifically ηl = 1√

TKE
. Then, for a

sufficiently large T , we obtain:

1

T

T−1∑
τ=0

E ‖ Of(wτ ) ‖2 ≤ O
(

(f(w0)− f(w∗))√
TKE

)
+O

(
EK2Ω2σ2

T

)
+O

(
Eσ2

T

)
+O

(
σ2
l

K
√
TKE

)
(8)

where σ2 = (α+ β)σ2
l + (α+ β) δ2g +G2.

The proof of this corollary is omitted due to space con-
straints. From our theoretical analysis, we can make several
noteworthy observations on the influential factors over conver-
gence.

The staleness bound Ω. Based on the second term in Eq. (8),
the impact of the staleness bound Ω on the convergence
dissipates at a rate of 1/T . A large staleness bound is not
desirable, as it dominates the increase of the second term.
However, we can adjust the minimum number of clients to
counteract its influence on the convergence rate.

The minimum number of clients K. As shown by the first
term of Eq. (8) that presents the distance to optimal loss,
increasing the minimum number of updates K induces a faster
loss drop. However, the corresponding impact from variance
σ2 can be enlarged, thus improving the gradient drift in
training. Also, once there is a large staleness bound Ω, waiting
for more clients in the server aggregation introduces more
serious out-of-date updates, negatively affect convergence.
Therefore, we expect K ∈ (1,M ] in which M cannot be too
large.

Compared to relate work such as FedBuff [8], PORT rep-
resents a more general case of semi-synchronous aggregation
methods with buffered updates. Specifically, setting consistent
weights pkτ = 1

K for gradients in the server aggregation
process, PORT’s convergence rate naturally degenerates into
Theorem 1 in [8].

V. PORT: IMPLEMENTATION AND EVALUATION

A. Simulating the wall-clock time within PLATO

In reviewing the literature in asynchronous federated learn-
ing, it is hard to overlook the fact that there does not exist a



federated learning framework that is the de facto standard on
evaluating the performance of newly proposed mechanisms.
Each proposed work used its own proprietary testbed for the
purpose of performance evaluations, and no existing works
shared their testbed implementation as open source, making
it almost impossible to reproduced their experimental results.
But such a glaring lack of reproducibility is not the only
issue outstanding in the existing works: as a global model
is trained in an FL session, they also resorted to gradients
(e.g. [2]), the number of rounds (e.g. [6]), or the number of
updates (e.g. [8]) till convergence to a target accuracy as the
performance metrics to be evaluated.

Wall-clock time. While it is acceptable for synchronous FL,
the number of rounds is no longer a suitable performance met-
ric in the context of asynchronous FL, since different rounds
would take substantially different durations in wall-clock time.
Naturally, the wall-clock time elapsed before converging to
a target accuracy is the most suitable — and arguably the
most important — performance metric that should be evaluated
when evaluating new asynchronous mechanisms. However, as
we investigate the feasibility of measuring the wall-clock time
in existing open-source federated learning frameworks, such
as FedML [10], none of them offered this feature.

Conceptually, measuring the elapsed wall-clock time is
straightforward: one would only need to watch the clock! As
we look into this problem with greater depth, however, there
is one major roadblock: there exists a very tight bound with
respect to the number of clients training simultaneously, due to
limitations in GPU memory in our experimental testbed (such
as a GPU-powered virtual machine). For example, if one mod-
ern GPU is supported on the virtual machine (such as Tesla
V100), we have 16GB of GPU memory, which can maximally
train no more than 16 LeNet-5 models concurrently, not to
mention more complex models.

Why should we simulate the wall-clock time? In order to
scale up to a number of clients that is greater than what GPU
hardware can accommodate, we will have no choice but to
train them in batches, one batch at a time. When clients in the
same round are trained in batches, however, it is imperative
to simulate the wall-clock time on the server. In synchronous
mode, the server only needs to advance the wall-clock time by
an amount equivalent to the training time of the slowest client
in one round. Yet, simulating wall-clock time becomes quite
a significant challenge when asynchronous federated learning
is used.

Consider the case where 10 clients are selected in a partic-
ular round by the server. In practice when operating in fully
asynchronous mode, the server would start the aggregation
process when the fastest client reports its model update, and
another client would be selected immediately after aggrega-
tion. Yet, if these clients train in batches — say two clients
at a time — the server will have no choice but to wait for
all 10 clients to arrive before it recognizes which client is the
fastest. But when all the clients, including the slowest ones,
have already finished training and reported to the server, how
can the server select a new client in the next round immediately
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1
As a client reports, insert into a priority
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        [#7, #6, #3, #1]

Steps for the server to follow as it
receives updates from selected clients

2 Wait till all selected clients report

3 Extract fastest clients with the earliest
finish times         #7

4 Advance the simulated wall clock time
to #7's finish time

6 Aggregate extracted clients, then select
#8 in round #2

5
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wall clock time to max(finish times of
stale clients)

#1

Fig. 4. When simulating the wall-clock time, the server needs to wait for
all selected clients to report, store these reports in a list sorted by their finish
times, and advance the simulated wall-clock time only when a client’s update
needs to be aggregated and replacement clients selected for the next round.

after the fastest client reports? What if the newly selected
client in the second round quickly reports back again, earlier
in wall-clock time than the remaining 9 clients in the first
round?

If we were to use the wall-clock time (rather than the
number of rounds) as our performance metric, these are real
and pressing research questions we are presented with when
evaluating asynchronous FL mechanisms. Yet, no existing
research software frameworks or papers on asynchronous
federated learning provided any potential solutions, let alone
satisfactory ones.

PLATO: an open-source research framework from
scratch. As no existing works on asynchronous FL shared
their implementations as open-source, and existing open-
source FL frameworks fell short on evaluating asynchronous
FL mechanisms appropriately, we implemented PLATO, an
open-source research framework for scalable federated learn-
ing research from scratch. Development on PLATO started
in November 2020, and so far required around 20 person-
month of research and development time. PLATO is designed
and built with several key objectives: it is scalable to a large
number of clients; extensible to accommodate a wide variety
of datasets, models, and FL algorithms; and agnostic to deep
learning frameworks such as TensorFlow and PyTorch. In
PLATO, clients communicate with the server over industry-
standard WebSockets, while the server may either run in the
same GPU-enabled physical machine as its clients — suitable
for an emulation research testbed — or deployed in a cloud
datacenter.

Simulating the wall-clock time. As a complete narrative
on PLATO is beyond the scope of this paper, we only illustrate
one novel design closely related to our performance evaluation:
how is the wall-clock time simulated on a server operating in
asynchronous mode?



Fig. 4 illustrates the steps that the server follows as it
receives updates from its selected clients in the same round.
Our overarching design assumption is that the server depends
on accurate reports from the clients on the wall-clock times
needed for their local training. As their reports are received,
clients are locally managed by a priority queue, sorted by their
finish times. Since the server has no a priori knowledge on
the client’s training speeds, it waits for all the clients selected
in the same round to report before it starts processing them.
As the server commences its processing, it would extract a
number of fastest clients from the priority queue, and advance
its wall-clock time accordingly.

In addition, in order to simulate a staleness bound where
stale clients are to be waited for, the server would scan the re-
maining clients and extract the stale candidates, again advance
its wall-clock time as clients that finish later are extracted.
PORT’s push-pull mechanism and urgent notifications can also
be implemented in this context, by sending a message to each
client beyond the staleness bound with a requested wall-clock
time, and requesting them to send a local per-epoch checkpoint
correspondingly. Finally, all extracted clients are aggregated to
produce a new global model, which is used for the next round
of client selection.

It may occur that faster clients in the next round finish even
sooner than slower clients in the previous rounds that have
not yet been extracted and processed. This can be handled
correctly in our wall-clock time simulation, since all the clients
who reported in real-time but are still considered training in
simulated time would still be in the priority queue, sorted by
their finish times. When the fastest clients are extracted and
processed, they can belong to either the current round or any
of the preceding rounds.

B. PORT vs. State-of-the-Art: Experimental Evaluation

Hyperparameter sweep with improved reproducibility.
Our new mechanism of simulating the wall-clock time is
indispensable when PORT is to be evaluated experimentally
with respect to the elapsed wall-clock time, and should not
be dismissed as an implementation detail. Before we evaluate
PORT experimentally, however, we will need to perform a
hyperparameter sweep for PORT’s hyperparameters: α for
computing the staleness discount in Eq. (1) and β for the
interference discount in Eq. (2).

It turns out that, in order to compare the convergence perfor-
mance across-the-board as α and β vary in our hyperparameter
sweep, we will need to run a large number of FL training
sessions. Yet, each of these sessions involves a substantial
amount of randomization: the server randomly selects a num-
ber of clients, each client randomly sample the dataset with
an i.i.d. or non-i.i.d. probability distribution, and the simulated
client speed needs to be randomly sampled from a distribution
as well. In PLATO, we support specifying random seeds for
random number generators, and using random.getstate()
and random.setstate() to protect random number genera-
tion from third-party frameworks. In addition, we preferred
using Pareto distribution rather than Zipf for heavy-tailed

client speed simulation, as Zipf is a discrete distribution and
clients with the same speed may be processed differently
across different runs. Finally, rather than measuring the actual
wall-clock time of local training loops on each client, we use a
pre-specified constant duration instead to ensure that the same
set of clients would be selected in each round across different
algorithms and runs.

With these mechanisms in place, PLATO is able to support
a reproducible mode, which enables fully reproducible exper-
iments where the same set of clients and data samples are
selected across runs. Throughout this section, all our parameter
settings have been released as open-source with PLATO to
guarantee reproducibility (as the focus of our work), and all
our experimental results were obtained on Compute Canada’s
narval supercomputer, with NVIDIA A100 GPUs and 128GB
of memory. 100 clients participated in all our experiments, and
up to 20 (for the synchronous mode) of which are randomly
selected in each round. All non-i.i.d. data distributions are
sampled with the Dirichlet distribution with a concentration
parameter of 5, leading to a mild non-i.i.d. distribution.

For our purpose of hyperparameter sweep, a large batch of
training experiments have been conducted, exploring values
from 0 to 40 for both α and β. Fig. 5 presents a comparison
across several representative pairs of values for α and β, in
comparison with FedAvg and over three image classification
tasks: MNIST and Extended MNIST (EMNIST) with the
LeNet-5 model, as well as CIFAR-10 with the ResNet-18
model. Overall, α = 3 and β = 1 offered a slight performance
advantage against other value pairs. FedAvg also performed
exceptionally well as this is a fully asynchronous incarnation
of FedAvg, with the same minimum number of clients required
before aggregation and the same staleness bound as its PORT
counterparts. This shows convincing evidence that, even with
PORT’s aggregation algorithm only, it can decidedly outper-
form federated averaging with all other settings left alone.

PORT without urgent notifications vs. its competitors:
experimenting with the staleness bound. In the next batch of
experiments, we wish to further explore PORT’s performance
in the context of its three leading competitors: FedAvg [1],
FedAsync [2], and FedBuff [8]. In addition to EMNIST and
CIFAR-10, we added the CINIC-10 dataset and the VGG-
16 model as a new benchmarking task, with 90000 training
data samples and a randomly sampled 5000 validation data
samples. Since our focus in these experiments was on a
thorough evaluation of the effectiveness of applying a staleness
bound, we decided to continue to maintain our reproducible
mode where local training times and all random seeds are pre-
specified and comparable across-the-board. PORT’s push-pull
mechanism with urgent notifications, on the other hand, was
not activated as it required access to the actual training times
in each epoch. Fig. 6 showed our results, comparing PORT
(without urgent notifications) with its competitors.

Right off the bat, we can observe that FedAsync completely
failed to converge. In fact, with additional experiments, we
concluded that it failed to converge regardless of its choice
of staleness functions. This is partly due to its aggressive
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(a) Evaluating the effects of hyperparameters α and
β with the MNIST dataset.
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(b) Evaluating the effects of hyperparameters α and
β with the EMNIST dataset.
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(c) Evaluating the effects of hyperparameters α and
β with the CIFAR10 dataset.

Fig. 5. Evaluating the effects of hyperparameters α and β with comparisons across-the-board in reproducible experiments.
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(a) PORT vs. its competitors with EMNIST.
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(b) PORT vs. its competitors with CIFAR10.
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Fig. 6. PORT (without urgent notifications) vs. FedBuff, FedAsync and federated averaging: a performance comparison with a focus on the staleness bound.

behaviour of aggregating the fastest client immediately as it
arrives, and partly due to the design of its own aggregation
algorithm. In fact, in Fig. 6c, we showed the results of using
PORT with a minimum number of clients of 1, and though it
didn’t perform well, it outperformed FedAsync substantially.

Though it is not a surprise that PORT outperformed syn-
chronous federated averaging in terms of wall-clock times
across all three datasets, the question whether it outperforms
FedBuff — with the same minimum number of clients —
needs a more detailed explanation. As FedBuff does not
wait for clients beyond a staleness bound, it effectively has
a staleness bound of ∞. The question becomes, therefore,
whether having a staleness bound of ∞ performs better than
having a limited staleness bound of, say, 10 (which is the
“sweet spot” we identified in Section III). For this reason,
we experimented with all three cases: FedBuff, PORT with a
staleness bound of ∞, and PORT with a staleness bound of
10.

The verdict is in: with a staleness bound of ∞, PORT
performed very similarly as compared to FedBuff, mostly
due to the fact that most of the client updates aggregated
are not stale. Both, however, suffered from the phenomenon
that when stale clients eventually arrive, they may affect the
accuracy of the model negatively for a few rounds. With a
staleness bound of 10, PORT performed quite visibly better

with all three datasets, and especially with EMNIST. With
this round of experiments, we are able to make the counter-
intuitive observation that, with respect to the wall-clock time,
it is worth imposing a reasonable staleness bound, even when
we need to wait for the slow clients to arrive.

PORT with urgent notifications vs. its competitors: the
finale. With all the results focused squarely on reproducibility
and fair comparisons across-the-board, we are now ready to
start measuring the actual training times, and turn on the push-
pull mechanism and urgent notifications in PORT. Our results
are shown in Fig. 7. With the CIFAR-10 dataset, PORT used
a low staleness bound of 3 so that urgent notifications can be
sent to a client when the staleness bound is reached. In this
scenario, PORT has clearly shown its forte: it took only 578
seconds to reach 50%, and 1125 seconds to reach 70%. In
comparison, its closest competitor, FedBuff, took 811 seconds
to reach 50% and 1311 seconds to reach 70%. This shows
that PORT enjoyed a performance margin of up to 40% over
FedBuff.

What about a higher staleness bound? With the CINIC-
10 dataset, PORT applied a staleness bound of 13, and we
observed that it progresses in a lock-step manner with FedBuff,
and only started to show a marginal advantage towards the
end of the convergence. As each client used only 3% of the
total samples for its training with the CINIC-10 dataset — as
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(a) PORT (with urgent notifications and a staleness bound of 3)
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Fig. 7. PORT (with urgent notifications vs. FedBuff, FedAsync and federated
averaging with the CINIC-10 and CIFAR-10, and a mild non-i.i.d. Dirichlet
data distribution.

opposed to 10% with CIFAR-10 — this phenomenon can be
attributed to the observation that a staleness bound of ∞ may
not be detrimental at all if local training completes quickly and
the turnover rate to new clients is high. In these situations,
PORT’s performance advantage over FedBuff may diminish,
as the effects of urgent notifications to stale clients take a
less significant role. It is also worth noting that due to the
randomness of measured training times, without activating the
reproducibility mode in PLATO, comparisons between close
competitors such as PORT and FedBuff can vary over different
datasets and runs. As compared to FedAsync (which failed to
converge) and federated averaging, however, it goes without
saying that PORT’s performance advantage is substantial with
both datasets.

Last but not the least, it is worth noting that, in contrast to
operating in a fully asynchronous mode — having a staleness
bound of ∞ — in FedBuff, a finite staleness bound provides
a well-known and attractive theoretical property that training
will be guaranteed to converge [3]. Although FedBuff always

converged in our experiments, having a theoretical guarantee
offers additional peace of mind, as it is unlikely to experiment
with all potential combinations of parameter settings.

VI. CONCLUDING REMARKS

How asynchronous can federated learning be? Towards
providing a convincing and reproducible answer, we made
several original contributions in this paper. We first explored
the entire design space of asynchronous FL involving multiple
parameterized dimensions, and argued that an optimal region
of operation should involve proper design choices along each
of the dimensions. We then presented PORT, our proposed ag-
gregation algorithm that utilizes well-chosen operating points
in each of the dimensions in our design space, and with proven
convergence guarantees.

One of the highlights in our contributions is the ability
of simulating wall-clock times and improving reproducibil-
ity in our experiments, thanks to our new open-source FL
framework, PLATO, developed from scratch. We are able
to take advantage of such improved reproducibility during
PORT’s hyperparameter sweep, and to present PORT’s supe-
rior performance in wall-clock times compared to FedBuff,
FedAsync, and federated averaging. While we are confident
on PORT’s performance across new datasets and models, the
open-source and reproducible nature of PLATO opens up new
opportunities for pushing the performance envelope further
with new and improved designs in the future with convincing
and reproducible results.
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