
Communication-Efficient MoE Fine-Tuning with
Locality-Aware Expert Placement

Chenghao Hu, Yufei Kang, Baochun Li
{ch.hu, yufei.kang}@mail.utoronto.ca, bli@ece.toronto.edu

Department of Electrical and Computer Engineering, University of Toronto

Abstract—With the prevailing Mixture-of-Experts (MoE) ar-
chitecture pushing the performance of Large Language Mod-
els (LLMs) to new limits, fine-tuning MoE models presents
a significant challenge due to their tremendous number of
parameters and sparsely activated network structures. While
expert parallelism has been proposed to train large-scale MoE
models by distributing expert layers among multiple devices, it
fails to exploit the unique communication patterns in fine-tuning
pre-trained MoE models. In this paper, we demonstrate that
expert layers are not uniformly accessed, but exhibit a stable
locality, with some experts being accessed more frequently than
others throughout the fine-tuning process. Based on this insight,
we introduce VELA, a novel fine-tuning system for MoE archi-
tectures that leverages expert locality to reduce communication
overhead. Specifically, VELA implements a novel training and
communication framework that separates expert layers from
the MoE model, and employs a locality-aware expert placement
mechanism to minimize the communication overhead, thereby
significantly improving the fine-tuning efficiency. Our extensive
array of evaluations demonstrates that VELA decreases the com-
munication overhead by up to 25%, consequently accelerating
the fine-tuning process by up to 28% compared to conventional
methods.

I. INTRODUCTION

In recent years, large language models (LLMs) have revo-
lutionized the field of natural language processing, becoming
increasingly popular and prevalent across a wide array of
applications [1]. These powerful models have demonstrated
remarkable capabilities in tasks ranging from text generation
to complex reasoning. Building upon their success, researchers
have pushed the boundaries even further by combining LLMs
with the Mixture-of-Experts (MoE) architecture [2], resulting
in MoE models that achieve unprecedented levels of perfor-
mance [3].

As LLMs continue to evolve, fine-tuning [4]–[6] has
emerged as a common practice to harness their immense
potential for specific domains or tasks. However, the integra-
tion of MoE architectures with LLMs presents a significant
challenge for end users to perform fine-tuning. The number of
parameters in MoE models can easily break into tens or even
hundreds of billions due to the existence of parallel experts.
For instance, while Mistral 7B [7] is already considered a
large model with roughly seven billion parameters, its MoE
variant, Mixtral 8×7B [3], easily reaches beyond fifty billion.
With such a large number of model parameters, even the

This research was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC) Discovery Research Program.

preparatory work for MoE models, such as loading the pa-
rameters, imposes harsh requirements on both hardware (e.g.,
GPU memory) and software (e.g., distributing parameters), not
to mention the subsequent fine-tuning process.

To effectively train MoE models, expert parallelism [2],
often combined with other parallelism techniques, has be-
come the bedrock computation paradigm when MoE models
are involved. As the name suggests, expert parallelism dis-
tributes the expert layers across multiple computing devices
(e.g., GPUs or TPUs) to alleviate the pressure of memory
constraints. During computation, the intermediate results of
expert layers must be synchronized through intra-node (when
computing devices are located on the same machine) and
cross-node (when computing devices are located on different
machines) communication to maintain their computational
integrity. This approach has been implemented in major LLM
training frameworks, such as DeepSpeed [8] and Megatron-
LM [9], and proven to be effective for training an MoE model
from scratch.

However, fine-tuning a pre-trained MoE model is decidedly
different from training it from scratch. In an MoE model,
each “expert” is essentially a sub-network that can specialize
in handling specific types of inputs or tasks. During the
initial pre-training stage, the training framework must achieve
a balanced load distribution among experts to ensure their
parameters are all sufficiently trained from randomness [2],
[10]. However, once an MoE model is fully trained, recent
studies have shown that certain experts tend to become more
active and will be accessed more frequently than others in
specific tasks [11]–[13].

The nature of fine-tuning is adapting the model to a specific
task, typically using a dataset that is too small to uniformly
engage all experts. In this work, we discover that such im-
balanced access pattern of experts, namely expert locality,
not only exists in MoE fine-tuning, but also stays stable
throughout the entire fine-tuning process. Since expert layers
are distributed using expert parallelism, the communication
overhead is inevitably affected by how experts are distributed
and accessed, e.g., more tokens will be sent to popular experts.
Unfortunately, conventional expert parallelism didn’t take this
into account, potentially leading to inefficient communication
and slowing down the fine-tuning process.

In this paper, we propose VELA, a fine-tuning system
specifically designed for MoE models based on these insights.
VELA implements a novel computation and communication

framework, which strips the expert layers out of the model
backbone, providing sufficient flexibility for users to manip-
ulate the distribution of expert layers. A highlight of VELA
is a new locality-aware expert placement mechanism, which
reduces the communication overhead by strategically distribut-
ing expert layers based on expert locality.

Highlights of our original contributions in this paper are
as follows. First, we present the phenomenon of expert lo-
cality and explore its impact on model fine-tuning. Through
empirical measurements, we demonstrate that the probability
of each expert being selected in a pre-trained MoE model
is biased, and such biased probability distribution remains
stable throughout the fine-tuning process. We also provide
a theoretical analysis of this phenomenon, which not only
explains the observed results, but also lays a solid theoretical
foundation to exploit expert locality for efficient MoE fine-
tuning.

Second, we implement a new fine-tuning and communi-
cation framework that separates the expert layers from the
backbone of MoE models. The backbone model is hosted on
a Master process, while experts are offloaded to multiple Ex-
pert Manager processes located on other available computing
devices. This design provides users with a flexible environment
to manipulate expert distribution at runtime.

Finally, based on expert locality and our framework design,
we propose a new locality-aware expert placement mecha-
nism that formulates the expert placement as an expectation
minimization problem, in order to find the optimal expert
arrangement and to achieve the best fine-tuning efficiency.
Our new MoE fine-tuning system, VELA, integrates our frame-
work design with our new expert placement mechanism. An
extensive array of evaluation results demonstrates that VELA
decreases the communication overhead by up to 25%, and
accelerates the fine-tuning process by up to 28% compared to
conventional expert parallelism.

II. PRELIMINARIES

Mixture-of-Experts. The Mixture-of-Experts model has
emerged as an evolution of the mainstream large language
model, which is built upon the transformer design [1]. Tra-
ditional transformers consist of two primary components:
multi-head self-attention and a feed-forward network (FFN),
interconnected through residual addition and normalization.
MoE models retain most of this structure but enhance it by
replacing the FFN with a specialized MoE block [2].

The workflow of the MoE block is depicted in
Fig. 1. The input of the MoE block is typically
a three-dimensional tensor with the shape of
[batch size, sequence length, feature size]. During pre-
processing, the input tensor is reshaped into a two-dimensional
form [batch size × sequence length, feature size], because
the tokens are processed individually in the MoE block,
regardless of their sequence origin. Consequently, a
conjugated post-processing step at the end of the MoE
block restores the shape of the output tensor.

Input

Multi-Head
Attention

Add & Norm

FFN

Add & Norm

Transformer Architecture

Input

Multi-Head
Attention

Add & Norm

MoE
Block

Add & Norm

Gating

FFN1 FFN2 FFNE…

Pre-process

Post-process

Weighted
Average

MoE Architecture

Fig. 1. The architecture of transformer and MoE models.

Each MoE block contains multiple “experts,” which are
essentially FFNs. Unlike traditional models, only a subset
of the experts is selected for computation for each token.
For instance, in the Mixtral 8×7B model, two out of eight
experts are chosen per token, with different tokens potentially
selecting different pairs of experts.

The selection of experts is determined by a gating mech-
anism, which functions as a softmax classifier predicting the
probability of expert selection for each token. The tokens are
then processed by the chosen experts, and the computation
results for each token are weighted averaged to produce the
final output. Specifically, the MoE output y for a token x is
given by

y =

∑
piyi(x)∑

pi
, (1)

where yi is the output of the selected expert i, and pi is
its softmax probability. With the MoE architecture, the large
number of parameters allows MoE models to learn more
complex feature representations. Meanwhile, the sparsely acti-
vated experts require significantly less resources for inference
compared to dense models at the same scale. As a result, MoE
models have become increasingly popular in both academic
research and commercial products.

Fine-Tuning with MoE models. Due to the massive num-
ber of model parameters, it’s typically impractical to fine-tune
the entire MoE model. Instead, parameter-efficient fine-tuning
techniques have been developed to reduce the scale of trainable
parameters. One of the most commonly used techniques is
Low-Rank Adaptation (LoRA) [14]. Given a pre-trained linear
layer with parameter matrix W ∈ Rn×m, LoRA injects two
low rank matrices A ∈ Rn×d, B ∈ Rd×m into this layer, and
the output of this layer becomes

y = Wx+ABx.

During fine-tuning, only matrices A and B are optimized
while W remains fixed. Since d ≪ min(n,m), the number
of parameters to optimize is significantly reduced.

While parameter-efficient fine-tuning techniques reduce the
scale of trainable parameters, the pre-trained model, despite
being frozen, still needs to be loaded into the computing

device, presenting significant hardware challenges. To alleviate
this memory constraint, model parameters can be quantized
before fine-tuning begins [15]. However, as MoE models
continue to grow in size and complexity, it’s impractical to
assume all parameters can be quantized to fit into a single
machine, not to mention the precision loss due to quantization.
Therefore, fine-tuning MoE models in a distributed manner is
a more reliable choice in practice.

Expert parallelism. To train MoE models, expert paral-
lelism [2] is considered a foundational computation paradigm
that distributes the MoE blocks, the largest components in an
MoE model, across multiple computing devices. As shown in
Fig. 2, experts numbered from 1 to E within the same MoE
blocks are assigned to different devices, while all other layers
are replicated on each device.

FFNE

Gating

…

Input
Shard #E

Attention

Device #E

Input
Shard #1

FFN1

Gating

…

Attention

Device #1

Replicated

Device
1,2,…,E

all-to-all dispatch

all-to-all combine

Fig. 2. An illustration of expert parallelism.

During runtime, the input data is sharded across devices,
in a fashion similar to data parallelism, with each device
processing only a portion of the inputs. After passing through
the gating layer, tokens are dispatched to their selected experts
for computation. The computation results are then gathered
back to their original positions through another all-to-all
communication. Finally, the weighted average shown in Eq. (1)
is performed to obtain the final results.

However, expert parallelism and its follow-up improvements
(e.g., [16]) are designed primarily for training models from
scratch, making some design choices, such as replicating all
non-expert layers, unnecessary for fine-tuning scenarios. More
importantly, the behavior of the gating mechanism differs
significantly during fine-tuning. When training an MoE model
from scratch, all expert layers are randomly initialized in the
beginning. To ensure these experts receive sufficient training,
the gating layer must achieve a certain degree of load balanc-
ing among the experts. In contrast, after the model is fully
trained, different experts may specialize in handling different
inputs or tasks, leading to an imbalanced access pattern when
the model is applied in specific application scenarios [11]. This

distinction between pre-training and fine-tuning suggests that
conventional expert parallelism can be further optimized for
fine-tuning tasks, which is a possibility we shall explore in
this paper.

III. EXPERT LOCALITY IN FINE-TUNING

A. Expert Locality of MoE Models

Expert locality, the phenomenon where certain experts are
accessed more frequently during MoE model training, is
widely observed. To gain a clear insight into this phenomenon,
we conducted a measurement study fine-tuning a TinyMistral-
6×248M model1, which is referred to as TinyMistral, on
the Tiny-Shakespeare [17] dataset. Specifically, TinyMistral
consists of 12 MoE blocks, each containing six experts, with
two selected for each token.

Empirically, we passed all data through the model in the
inference mode (i.e., no fine-tuning has occurred yet) and
counted the number of times each expert was accessed. We
then calculated the frequency by determining the ratio of
tokens processed by each expert compared to the total number
of tokens and plotted the results in Fig. 3(a). Notably, there is
a disparity in access frequency among experts within the same
MoE block. For instance, experts 2 and 3 in the first block are
accessed significantly more frequently than their counterparts.

This imbalanced access pattern exists throughout the entire
lifecycle of MoE models, from pre-training to deployment for
inference. Such a phenomenon poses unique challenges and
opportunities across different application scenarios, and how
it is handled varies based on the specific use cases:
• Pre-training stage: Imbalanced expert access during pre-

training leads to popular experts receiving more training
than others [2]. Therefore, it is crucial to mitigate expert
locality during the pre-training phase. For instance, one ap-
proach is to introduce auxiliary loss terms [10] that penalize
this imbalance, enforcing a more equal utilization of experts
to ensure that all of them receive sufficient training.

• Inference stage: Despite efforts to achieve load balance
during pre-training, expert locality still exists after the model
is fully trained and deployed in an inference environment.
As a result, uniformly allocating computing resources across
all experts leads to inefficient utilization, since some experts
are barely used. Researchers have leveraged this insight to
optimize the deployment of pre-trained MoE models [11]–
[13] by strategically allocating more resources to frequently
accessed experts.

Now let’s return to model fine-tuning. Similar to inference
deployment, fine-tuning also works with pre-trained MoE
models, whose model weights are fully trained, and expert
access patterns have already been established. Given this
situation, it seems natural to capture the selection probability
of each expert in advance to optimize the fine-tuning process.

However, there is an important distinction between MoE
model deployment and fine-tuning. During deployment, model
weights remain fixed in inference, while in fine-tuning, these

1https://huggingface.co/M4-ai/TinyMistral-6x248M

1 2 3 4 5 6 7 8 9 10 11 12
Layer ID

1
2

3
4

5
6

Ex
pe

rt
 ID

0.0

0.2

0.4

0.6

0.8

1.0

(a) Expert access frequency.

0.5 0.6 0.7 0.8 0.9 1.0
Softmax Score of Selected Experts

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

(b) Cumulative distribution of softmax score of
selected experts.

0 50 100 150 200 250 300
Fine-Tuning Steps

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ai

liz
ed

 A
cc

es
s F

re
qu

en
cy

Expert 1
Expert 2
Expert 3

Expert 4
Expert 5
Expert 6

(c) Expert access frequency during fine-tuning.

Fig. 3. Expert locality persists in fine-tuning TinyMistral model on Tiny-Shakespeare.

weights are continuously updated. This means that model be-
haviors, including expert selection patterns, could potentially
change during the fine-tuning process. Therefore, before we
can exploit the potential benefits of expert locality, we must
first address a crucial question: will expert selection patterns
remain stable as the model behavior evolves during fine-
tuning?

B. Expert Selection in Fine-Tuning

To address this question, we theoretically study the stability
of the expert selection process and confirm the reliability
of expert locality as a predictor throughout the fine-tuning
process.

As shown in Fig. 1, experts are selected by the softmax
predictor in the gating mechanism. Thus, we analyze the
softmax output when input perturbation exists.

Let’s examine a simplified abstraction of a gating mech-
anism within the MoE model. Let x denote the input of the
MoE model, and let f(x;wt) denote all the computations prior
to the softmax predictor. The softmax prediction Pt(x) at step
t can be obtained by

Pt(x) = softmax (f(x;wt)) ,

where wt represents the model parameters to be fine-tuned.
Assume there are E experts. The e-th component Pt(x)[e],

where e ∈ {1, 2, . . . , E}, denotes the softmax score for the
e-th expert. The stability of expert selection can be quantified
by

∆Pt(e) = |Pt(x)[e]− Pt−1(x)[e]| , (2)

where ∆Pt(e) represents the difference in the softmax scores
for expert e after one step of fine-tuning. Intuitively, a smaller
value indicates that the gating mechanism consistently selects
the same experts for the same token inputs during fine-tuning.
Theoretically, the following theorem establishes a bound on
this difference and provides critical insights into the expert
selection process during fine-tuning.

Theorem 1. Assume that the loss function f(x;w)
is L-Lipschitz continuous with bounded gradients, i.e.,
||∇f(x;w)|| ≤ L. If the model weights wt are optimized from

wt−1 using the SGD optimizer with learning rate µ at step t,
such that wt = wt−1 − µ∇f(x;wt−1), we have

∆Pt(e) ≤ µEL2 Pt−1(x)[e](1− Pt−1(x)[e])︸ ︷︷ ︸
uncertainty term

,

Proof. Let yt = f(x;wt). The softmax score for expert e is

Pt(x)[e] = softmax(yt)[e] =
exp(yt[e])∑E

k=1 exp(yt[k])

The partial derivatives with respect to each component of
yt are

∂Pt(x)[e]

∂yt[k]
=

{
Pt(x)[e](1− Pt(x)[e]) if k = e
−Pt(x)[e]Pt(x)[k] if k ̸= e

We approximate Pt(x)[e] by the first-order Taylor expansion
of the softmax function around yt−1, yielding

Pt(x)[e] ≈ Pt−1(x)[e] +

E∑
k=1

∂Pt−1(x)[e]

∂yt−1[k]
(yt[k]− yt−1[k]) .

Substituting Pt(x)[e] in (2) with the Taylor expansion, we
have

∆Pt(e) ≈

∣∣∣∣∣
E∑

k=1

∂Pt−1(x)[e]

∂yt−1[k]
(yt[k]− yt−1[k])

∣∣∣∣∣ . (3)

Given Lipschitz continuity, we have

|yt[k]− yt−1[k]| ≤ ||f(x;wt)− f(x;wt−1)||
≤ L||wt − wt−1||
≤ Lµ||∇f(x;wt−1)||
≤ µL2.

Then (3) can be rewritten as

∆Pt(e) ≤ µL2

∣∣∣∣∣
E∑

k=1

∂Pt−1(x)[e]

∂yt−1[k]

∣∣∣∣∣ . (4)

Finally, we bound the partial derivatives as follows:∣∣∣∣∣
E∑

k=1

∂Pt−1(x)[e]

∂yt−1[k]

∣∣∣∣∣
≤
∣∣∣∣∂Pt−1(x)[e]

∂yt−1[e]

∣∣∣∣+
∣∣∣∣∣∣

E∑
k=1,k ̸=e

∂Pt−1(x)[e]

∂yt−1[k]

∣∣∣∣∣∣
≤Pt−1(x)[e](1− Pt−1(x)[e]) +

E∑
k=1,k ̸=e

Pt−1(x)[e]Pt−1(x)[k]

≤EPt(x)[e](1− Pt−1(x)[e]).

The last inequality is derived from 1 − Pt−1(x)[e] =∑E
k=1,k ̸=e Pt−1(x)[k], implying that Pt−1(x)[k] ≤ (1 −

Pt−1(x)[e]) for any single k. Putting the bound back into (4)
completes the proof.

C. Locality Persists in MoE Fine-Tuning

According to Theorem 1, the stability of expert selection
during the fine-tuning process is determined by the uncertainty
term Pt−1(x)[e](1 − Pt−1(x)[e]). This uncertainty term is
influenced by the softmax scores Pt−1(x)[e] of the expert
selection from the previous step. When Pt−1(x)[e] approaches
0 or 1, the uncertainty term approaches 0, meaning the
gating mechanism makes consistent selections throughout the
process. This observation leads us to the following claim:

Claim 1. When the gating mechanism exhibits a high pref-
erence in selecting certain experts initially, it maintains this
selection pattern throughout the fine-tuning stage.

To empirically validate this claim, we fine-tuned
TinyMistral for 300 steps. Before fine-tuning, we recorded
the sum of the softmax scores for the selected experts in the
first MoE block, and plotted the cumulative distribution in
Fig. 3(b). The results show that nearly all scores exceed 0.5,
with over 60% of the softmax scores higher than 0.7. Note
that the model has six experts and only two are selected,
the remaining 0.3 scores are shared among the other four
experts. Such a distribution indicates that the model exhibits
high preference in its expert selections, suggesting a strong
initial bias in the routing decisions.

Throughout the fine-tuning process, we monitored the be-
havior of the gating mechanism in the first MoE block. As
presented in Fig. 3(c), the frequency with which each expert in
this block is accessed remains very stable. Notably, popular ex-
perts become slightly more favored as fine-tuning progresses.
This observation aligns perfectly with our theorem, which
predicts that when a model demonstrates high preference in
its expert selection, it maintains these choices throughout the
fine-tuning steps.

As a brief summary, we first visualized the expert lo-
cality phenomenon in pre-trained MoE models (Fig. 3(a)).
Our theoretical analysis demonstrated that expert selection
remains stable during fine-tuning, which was corroborated by
empirical observations (Fig. 3(c)). These findings provide a

solid foundation for exploiting expert selection probability and
developing a more efficient fine-tuning system.

IV. VELA: FINE-TUNING MOE MODELS
WITH EXPERT LOCALITY

To facilitate the fine-tuning process of MoE models, we
present VELA, a new system framework designed to enhance
the fine-tuning efficiency by leveraging expert locality. Specif-
ically, there are two key components in VELA:
1) A novel distributed framework that detaches the expert

layers from MoE model, allowing users to manipulate MoE
model fine-tuning workloads with unprecedented flexibility.

2) A locality-aware expert placement mechanism that mini-
mizes communication overhead by strategically distributing
experts based on their estimated access probabilities.

Next, we will present VELA’s architecture and functionality
in detail.

A. Framework Design
VELA is built upon expert parallelism and aims to optimize

expert placement to minimize the communication overhead.
To achieve this, it introduces a novel distributed fine-tuning
framework, which provides unprecedented flexibility in man-
aging the expert distribution. There are two highlights in
VELA’s framework design.
Expert broker. As previously illustrated in Fig. 2, conven-
tional expert parallelism tightly couples expert layers with
other layers, making their fine-grained placement impractical.
To address this, VELA first introduces an Expert Broker design
that fully detaches the expert layers from the MoE model,
facilitating flexible placement strategies.

Master Process

Fine-Tune
Dataset

Model
Backbone

Expert Broker
Token

Dispatcher
Token

ReceiverGating

Attention
Gradient

Dispatcher
Gradient
Receiver

…

Fine-Tune
Trainer

Worker Process #1

Optimizer

Fwd Bwd

Experts shard
#1

Worker Process #2

Optimizer

Fwd Bwd

Experts shard
#2

Worker Process #3

Optimizer

Fwd Bwd

Experts shard
#3

Communication Infrastucture

Fig. 4. The overview of VELA framework, where ’Fwd’ and ’Bwd’ means
forward and backward computations respectively.

As shown in Fig. 4, VELA replaces the original MoE block
with a special expert broker layer. As the name suggests, the

broker layer does not perform any computation; instead, they
function as proxies, offloading data to expert layers which will
be separated from the model body and possibly placed on other
devices. In the forward pass, the broker layer dispatches tokens
to each expert according to the gating output, and waits to
receive the expert computation results. Similarly, during the
backward pass, a conjugated set of gradient dispatcher and
receiver will manage the exchange of gradients.

We refer the processed model as the model backbone,
excluding the expert layers that account for the majority of
the model size. This allows the expert layers to be flexibly
hosted and computed on any device, as long as their locations
are reported to the broker layers such that data flow of the
intermediate results can be directed to the correct place.

From the trainer’s perspective, the expert broker functions
exactly like a real MoE block, processing inputs from previous
layers and passing expert computation results to subsequent
layers. This allows the model backbone to be used directly by
trainers, making the expert broker design transparent to the
fine-tuning process.
Master-worker architecture. As we have shown in Fig. 2,
expert parallelism is typically combined with data parallelism
to handle the huge amount of pre-training data. In this way,
all non-expert layers are replicated across devices, allowing
input data to be sharded and processed by different devices.
However, we argue that this design is not suitable for end-user
fine-tuning for several reasons:
1) Fine-tuning datasets are usually domain-specific and much

smaller than pre-training data.
2) Most end-users do not have the computational resources to

replicate the model, especially when it becomes unneces-
sary.

3) Data parallelism requires an expensive all-reduce operation
at the end of each training step to combine gradients and
update parameters.

In simple words, applying data parallelism to large MoE
models when working with small fine-tuning datasets leads
to unnecessary model replication, which significantly wastes
computational resources especially for end users.

To address these issues, VELA deviates from the conven-
tional design of expert parallelism frameworks and adopts a
master-worker architecture, which eliminates redundancy and
improves communication efficiency in fine-tuning. As shown
in Fig. 4, VELA operates with two different roles: a master
process and a series of worker processes. The model backbone
is hosted on the master process because it is much smaller
than the experts (e.g., the model backbone of Mixtral 8×7B
is only 3 GB while the entire model is over 87 GB in half
precision), typically we just need to launch one master process.
Meanwhile, the expert layers are distributed among worker
processes. To avoid unnecessary cross-GPU data transfer dur-
ing computation, we follow common practices in distributed
training and launch worker processes on each available GPUs.
Flexibility of VELA. The expert broker design and master-
worker architecture in VELA decouple the physical connection
between expert layers and other layers, providing extraordinary

flexibility in arranging the model-to-device mapping. This flex-
ibility allows users to freely configure the specific deployment
location for each expert and the number of experts to be
deployed on each device.

The workflow of VELA is presented in Fig. 4. The master
process initializes the fine-tuning tasks, while worker pro-
cesses wait for intermediate results or gradients from the
model backbone. Upon receiving the data, worker processes
perform forward and backward computations on the requested
experts. When a fine-tuning iteration is complete, an optimiza-
tion step is executed on the trainable parameters.

B. Locality-Aware Expert Placement

With our distributed fine-tuning framework in place, the
remaining challenge is to optimally allocate experts across
available devices to minimize communication overhead be-
tween the master and worker processes. To address this,
we formulate expert placement as an optimization problem,
aiming to minimize the communication time required for each
fine-tuning step.
Decision variables. Consider a distributed setting with N
available computing devices, such as GPUs, spreading across
multiple computing nodes. The MoE model to be fine-tuned
consists of L MoE blocks, each containing E experts. We
represent an expert distribution scheme as a three-dimensional
binary tensor X ∈ RN×L×E , where

Xn,l,e ∈ {0, 1},

which means tensor elements Xn,l,e takes the value 1 if the
e-th expert of block l is assigned to worker process n, and
0 otherwise. For X to be a valid distribution scheme, the
following requirement

N∑
n=1

Xn,l,e = 1

should be satisfied to ensure that each expert can only be
assigned to a single work process.
Optimization objective. Next, we estimate the communica-
tion time given the expert distribution scheme X . During fine-
tuning, a total of K tokens are fed into the gating layer for
processing where

K = batch size × sequence size.

Since experts are distributed among different workers, we
denote Kn,l as the number of tokens sent to worker n for
computation in MoE block l. The data transmitted between
the master process and worker n for MoE block l is given by

Dn,l =
bHKn,l

8

bytes, where H is the feature size of this model, and b is the
bit-depth for the feature.

Let Bn denote the bandwidth between the master process
and worker n, which can be measured in advance. The value of
Bn varies significantly depending on the location of the worker
process. For instance, if worker n and the master process

are spawned on the same node but different GPUs, they can
communicate with high-speed PCIe or NVLink connections
with bandwidth up to tens even hundreds of Gbps. Conversely,
if the worker process is located on a different machine, the
bandwidth will be constrained by the network connection.

Besides dispatching the tokens to each worker, the master
process receives output of the same size from each worker.
Thus, the total communication overhead is doubled to 2Dn,l.
Thus, the communication time for worker n processing MoE
block l is:

Tn,l =
2Dn,l

Bn
=

bHKn,l

4Bn
(5)

Note that prior to fine-tuning, we pass the dataset through
the model to generate a probability matrix P ∈ RL×E , where
each element Pl,e represents the probability of expert e being
accessed in MoE block l. Due to expert locality, the probability
matrix remains stable throughout the process. Therefore, we
safely estimate the communication time as follows:

E(Tn,l) =
bH

4Bn
E(Kn,l) =

bH

4Bn

E∑
i=1

Xn,l,ePl,eK (6)

During fine-tuning, the master process waits for all workers
to finish their communication before proceeding to subsequent
operations. Therefore, the expected total communication time
for MoE block l is determined by the maximum of the
individual worker communication times. Consequently, the
total communication time for one fine-tuning step consisting
of multiple MoE blocks is:

L∑
l=1

max (E(T1,l),E(T2,l), . . . ,E(TN,l)) , (7)

which forms the optimization target for the expert placement
problem.
Problem formulation. We are now ready to present the
complete problem formulation as follows:

min
X

L∑
l=1

max (E(T1,l),E(T2,l), . . . ,E(TN,l)) (8)

s.t. Xn,l,e ∈ {0, 1}, (9)
N∑

n=1

Xn,l,e = 1, (10)

L∑
l=1

E∑
e=1

Xn,l,e ≤ Cn (11)

Constraints (9) and (10) ensure that the results are binary
indicators, such that each expert can be assigned to only one
worker process. Constraint (11) implies that the number of the
expert that worker n can host is limited by a constant number
Cn to make sure the assigned experts won’t exceed the GPU
memory limitations in the runtime.

Due to the homogeneous nature of expert weights (i.e., each
expert has consistent input/output feature sizes and uniform
weight matrices), the GPU memory consumption for each

expert during fine-tuning remains constant. Consequently, the
GPU memory required by a worker scales linearly with the
number of experts it hosts. The capacity Cn of worker n can
be obtained by dividing the total available GPU memory of
worker n by the memory required for a single expert.
LP transformation. To efficiently solve the expert placement
problem, we transform the original problem into a linear
programming (LP) problem. Notably, constraints (11) and (10)
are already linear. Therefore we just need to address the binary
constraint (9) and the max function in the optimization target.

1) For the optimization target (8), referring to (6), we note
that each element in the max function is linear. We can
equivalently linearize it by replacing the max function with
an auxiliary variable λl, and adding constraints to ensure
each of the original linear expressions in the max function
is less than or equal to λl.

2) For (9), we can relax the binary constraint and allow
each element to float between 0 and 1. After solving the
problem, we can round the results back to either 0 and 1.

In this way, the original problem becomes

min
X

L∑
l=1

λl

s.t. 0 ≤ Xn,l,e ≤ 1,
N∑

n=1

Xn,l,e = 1,

L∑
l=1

E∑
e=1

Xn,l,e ≤ Cn,

bH

4Bn

E∑
e=1

Xn,l,ePl,eK ≤ λl

where the optimization target and all the constraints are linear.
The original optimization problem is, therefore, transformed
into a linear programming problem, and can be efficiently
solved by off-the-shelf LP solvers.

The solution of the above problem yields a tensor with float-
ing values between 0 and 1, which we need to convert back to
binary values while respecting GPU memory constraints. This
conversion can be accomplished through the following steps:

1) Round each relaxed value to binary by applying a threshold
of 0.5, where any value above 0.5 becomes 1 and any value
below or equal to 0.5 becomes 0.

2) Examine each worker process n and identify those where
the number of assigned experts exceeds its capacity limit
Cn. For these overloaded devices, remove expert assign-
ments with the lowest relaxed values until the capacity
constraint is satisfied.

3) Check for any experts that were left unassigned during the
previous step. For each such expert, find a device that still
has available capacity and showed the strongest affinity
(i.e., the highest relaxed value) for that expert in the original
solution, then assign the component to that device.

This process ensures we obtain a feasible binary solution
that closely approximates the optimal relaxed solution while
satisfying all capacity constraints.

V. EVALUATION

A. Evaluation Setup

Experimental environment. We implemented and deployed
VELA in a real distributed environment, including three com-
putation nodes, each equipped with two NVIDIA V100 GPUs,
for a total of six GPUs. Each computation node has 72
GB of physical main memory, while the GPU has 32 GB
of dedicated GPU memory. According to the measurement
results, the GPUs within the same node communicate using
internal links, offering a measured bandwidth of up to 18.3
GB/s. On the other hand, different nodes are linked using
Ethernet connection with a bandwidth of 1.17 GB/s measured
by iperf.

Throughout our experiments, we observed that over 18
TB of intermediate data, like features and gradients, is
transmitted across different nodes. This substantial volume
of data exchange emphasizes the critical importance of
communication efficiency in distributed fine-tuning of MoE
models.

Models and datasets. We evaluated VELA using two MoE
models: Mixtral-8×7B [3] and GritLM-8×7B [18]. Mixtral-
8×7B is widely considered an optimal balance between per-
formance and model scale, making it the most commonly used
MoE model. GritLM-8×7B is an enhanced version of Mixtral,
fine-tuned on a generative representational instruction tuning
dataset [18]. Even though using half precision, we still need
to load over 80 GB of pre-trained model parameters into GPU
memory to work with industry-level MoE models.

To demonstrate VELA’s generalizability, we fine-tuned these
MoE models using two different datasets, each corresponding
to a distinct NLP task: 1) WikiText [19], which is pure text
content used for language modeling. 2) Alpaca [4], where the
data is organized into dialogues, representing the prevailing
instruction tuning task [6].

Fine-tune settings. In our experiments, we employed
LoRA [20], the most prevalent fine-tuning technique, to fine-
tune the MoE models. These models were fine-tuned using
mixed precision: pre-trained parameters were loaded in half
precision, while other variables remained in full precision to
maintain model performance.

Shen et al. [5] demonstrated that fine-tuning the gating
mechanism leads to performance degradation. Therefore, in
our experiments, we fine-tuned all the linear layers except for
the gating mechanism, using a LoRA configuration of r = 8
and α = 16. The batch size was set to 8, and all models were
fine-tuned for 500 steps using the AdamW optimizer with the
following hyperparameters: learning rate 3e − 5, beta values
[0.8, 0.999], epsilon 1e− 8, and weight decay 3e− 7.

Our evaluation excludes convergence results from fine-
tuning since Vela maintains identical computation logic to

single-device fine-tuning, despite the expert layers being
distributed across different devices. Because the intermediate
data is exchanged without precision loss, fine-tuning MoE
models with Vela produces the same convergence results as
traditional fine-tuning approaches.

Baselines. In our experiments, we primarily compared VELA
with conventional expert parallelism. To ensure a fair com-
parison and exclude the effects of hardware acceleration, we
implemented conventional expert parallelism strictly following
Fig. 2. In this implementation, the experts of each MoE block
were sequentially placed on GPUs, with the e-th expert of
any MoE block assigned to the e%N -th GPU while the other
layers were replicated among all devices.

Beyond expert parallelism, we also validated the superiority
of VELA by comparing it with different placement schemes
within the same framework. To the best of our knowledge,
VELA is the first work to study the expert placement problem
in MoE fine-tuning. Consequently, we can only compare it
with two baseline approaches: 1) sequential placement, which
sequentially assigns experts to devices as in expert parallelism,
but runs within VELA’s framework, and 2) random placement,
where all experts from all MoE blocks are randomly shuffled
and assigned to different worker processes.

B. Evaluation Results

Communication efficiency. We first evaluate communication
efficiency by examining the average cross-node communi-
cation traffic per node (referred to as external traffic). We
track external traffic at each step to capture the dynamic
characteristics of expert selection.

In our experiments, communication overhead primarily
arises from token exchange. For baseline methods, approxi-
mately more than 2600 tokens are sent to external devices
for each MoE block in one fine-tuning step. Each token has
a feature size of 4096 and a bit depth of 16 bits, totally
16.4 MB. This data exchange occurs four times across all
32 layers in the Mixtral and the GritLM models: sending
and gathering features in the forward pass, and sending and
gathering gradients in the backward pass. Consequently, there
is around (16.4× 4× 32)/3 ≈ 866 MB of external traffic for
token exchange per node for each fine-tuning step.

The communication traffic depends on the location of the
experts. Since there is no optimization in baseline methods,
expert parallelism, sequential and random expert placements
have no advantage against each other. Thus, the communica-
tion overhead of these baseline methods is roughly the same
as shown Fig. 5, while expert parallelism is slightly higher
due to the gradient synchronization.

On the other hand, VELA achieves the lowest external
traffic compared to all other methods across all experiment
settings. This demonstrates the effectiveness of the locality-
aware placement method. Compared with original expert
parallelism, the optimized placement of VELA significantly
reduces the communication overhead, and the performance
gain varies depending on the dataset and model used. For

0 100 200 300 400 500
Fine-tuning Steps

600

700

800

900
Av

er
ag

e
Tr

af
fic

 (M
B)

Sequential
Random

Vela
EP

(a) Mixtral with WikiText.

0 100 200 300 400 500
Fine-tuning Steps

600

650

700

750

800

850

900

Av
er

ag
e

Tr
af

fic
 (M

B)

Sequential
Random

Vela
EP

(b) Mixtral with Alpaca.

0 100 200 300 400 500
Fine-tuning Steps

700

750

800

850

900

Av
er

ag
e

Tr
af

fic
 (M

B)

Sequential
Random

Vela
EP

(c) GritLM with WikiText.

0 100 200 300 400 500
Fine-tuning Steps

600

700

800

900

Av
er

ag
e

Tr
af

fic
 (M

B)

Sequential
Random

Vela
EP

(d) GritLM with Alpaca.

Fig. 5. Cross-node traffic comparison with expert parallelism (EP) and other expert placement strategy.

EP Seq Random Vela
Expert Placement Strategy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

Ti
m

e
(s

)

3.12

2.76 2.65

2.24

(a) Mixtral with WikiText.

EP Seq Random Vela
Expert Placement Strategy

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Av

er
ag

e
Ti

m
e

(s
)

2.91
2.73 2.76

2.31

(b) Mixtral with Alpaca.

EP Seq Random Vela
Expert Placement Strategy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

Ti
m

e
(s

)

2.93
2.79 2.82

2.41

(c) GritLM with WikiText.

EP Seq Random Vela
Expert Placement Strategy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

Ti
m

e
(s

)

3.06
2.75 2.63

2.31

(d) GritLM with Alpaca.

Fig. 6. Average time to complete one fine-tuning step. “EP” indicates expert parallelism and “Seq” represents the sequential placement strategy.

the WikiText dataset, VELA reduces communication overhead
by an average of 18.1% to 25.3% compared to conventional
expert parallelism. In contrast, the benefit on Alpaca dataset
is relatively smaller, with communication reduction ranging
from 17.3% to 20.1%.

It is worth noting that the benefit of VELA remains
consistent throughout the entire fine-tuning process. Even
though the external traffic of VELA increased slightly as
shown in Fig. 5(a), it remains significantly lower than that of
comparisons. These results indicate that the expert selection
pattern remain stable throughout the fine-tuning process,
further verifying our theoretical analysis of expert selection
stability in fine-tuning.

Fine-tuning acceleration. The communication overhead di-
rectly affects fine-tuning speed, so we further evaluate effi-
ciency by examining the average time spent on each fine-
tuning step. The results are presented in Fig. 6.

Although the conventional expert parallelism has a similar
communication overhead to sequential and random place-
ments, their communication time is significantly distinct, due
to different fundamental communication patterns. In expert
parallelism, all-to-all communication is required to dispatch
tokens to different devices. Consequently, all devices need to
determine how many tokens they should receive from each
other before performing the data transfer. In other words, token
exchange in conventional expert parallelism is interrupted by
a status synchronization process.

In contrast, VELA avoids this problem due to its
master-worker architecture. Instead of requiring all-to-all
synchronized communication, VELA uses a one-to-all pattern
where the master process directly initiates data transfer with
worker processes. Without such synchronization overhead,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Layer ID

1
2

3
4

5
6

7
8

Ex
pe

rt
 ID

0.0

0.2

0.4

0.6

0.8

1.0

(a) WikiText.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Layer ID

1
2

3
4

5
6

7
8

Ex
pe

rt
 ID

0.0

0.2

0.4

0.6

0.8

1.0

(b) Alpaca.

Fig. 7. Expert access frequency of Mixtral on different datasets.

our framework outperforms conventional expert parallelism
in terms of speed. Especially, with the optimized expert
placement, VELA accelerates each fine-tuning step from
20.6% in Fig. 6(b) to 28.2% in Fig. 6(a) which is even greater
than the reduction ratio in the communication size due to the
architectural difference.

Performance analysis. The benefit of VELA comes from
leveraging the locality phenomenon of MoE models. To better

understand VELA’s performance improvement, we visualized
the expert access pattern in our experiments and showed it in
Fig. 7.

To avoid redundancy, we only show the access frequency
results for Mixtral as the other model exhibits a similar
pattern. On both datasets, there are multiple popular experts
spread across different layers. Interestingly, different datasets
show different preference for expert selection. For example,
the last expert in the third MoE block is extremely popular
in WikiText, but rarely selected in Alpaca. This aligns with
the common understanding that different experts specialize in
processing tokens related to different domains.

From previous experiments, we observed that VELA per-
forms better with the WikiText dataset than with Alpaca, and
Fig. 7 reveals the underlying causes.

In WikiText, expert access is more concentrated on popular
experts, as indicated by the large white areas in the heatmap.
By grouping these popular experts together, VELA signifi-
cantly reduces communication overhead in fine-tuning.

In contrast, the expert access is more uniformly distributed
with Alpaca, as indicated by numerous light blue blocks in
the heatmap. In this case, although VELA groups the popular
experts, many tokens still need to be processed by experts
located on other devices. This degrades the performance and
was reflected in both the overall traffic reduction and the
stability, as shown in Fig. 5.

VI. RELATED WORK

Parameter-efficient fine-tuning. Model fine-tuning enables
users to quickly adapt powerful LLMs to their specific
tasks [21], [22]. However, due to the formidable size of LLM
parameters, fine-tuning the entire parameter set is impractical.
Consequently, parameter-efficient fine-tuning techniques have
become widely adopted in the LLM era, such as freezing most
parameters while retraining selected layers [23], or introducing
auxiliary adapters [14], [24]–[26]. Though these methods
reduce the number of trainable parameters, the large scale
of pre-trained parameters still poses significant challenges.
As a result, quantization techniques are typically applied to
pre-trained parameters in fine-tuning tasks, compressing them
from 32 bits to as low as 4 bits [15], [27]–[29] at the cost of
performance degradation.

However, as LLMs especially MoE models continue to grow
in scale, it becomes impossible to host the entire model on a
single machine, even with parameter-efficient techniques and
quantization. As a result, distributed training is required, even
for fine-tuning tasks.
Training with MoE. Expert parallelism [2] was introduced as
a method to distribute MoE computations and quickly became
the foundational computational paradigm for MoE models.
This approach has been integrated into most mainstream train-
ing frameworks, including Megatron-LM [9], DeepSpeed [8],
and ColossalAI [30]. However, these frameworks are primarily
designed for building and pre-training models from scratch,
making them less suitable for fine-tuning tasks. First, these
frameworks have their own specific model definitions and

MoE implementations, requiring significant engineering effort
from end-users to convert pre-trained weights to fit these
frameworks. Second, and more critically, these frameworks
only allow users to specify the degree of expert parallelism,
but do not offer the flexibility for manual control over expert
distribution that VELA provides.

Some dedicated fine-tuning frameworks, such as LLama-
Factory [31], do offer interfaces for fine-tuning MoE models.
However, these solutions typically assume that the model can
fit, or be quantized to fit, on a single machine, which is
impractical for most users.
Locality in MoE models. The expert locality phenomenon
was first observed in the pre-training stage [2]. Since the
model was initialized from scratch, all expert parameters are
waiting to be trained. To facilitate effective pre-train the MoE
model, load balancing terms [2], [10] and mechanisms [16]
are typically introduced to regulate the behavior of the expert
selection, ensuring that all expert layers are sufficiently trained.
However, once the model is fully pre-trained, fine-tuning
the gating mechanism could potentially damage the learned
representations, leading to a performance degradation [5]. This
fundamental difference between pre-training and fine-tuning
stages means that methods developed for pre-training cannot
be adopted during fine-tuning. Instead of avoiding expert
locality, VELA aims to leverage it to improve fine-tuning
efficiency.

Expert locality is also considered in the inference systems
of MoE models in a way similar to VELA. For instance,
Lina [11] estimates the expert popularity to dynamic sched-
ule the resources during inference. Fiddler [12] and MoE-
Infinity [13] utilize the expert access frequencies to prefetch
and offloads some experts for better inference latency. In
these systems, MoE models remain fixed during inference,
making expert selection a static process. In contrast, the model
behavior evolves over time during fine-tuning. To the best
of our knowledge, VELA is the first work that provides a
theoretical analysis on the dynamic features of expert selection
during fine-tuning.

VII. CONCLUDING REMARKS

With the increasing popularity of LLMs, fine-tuning these
models to adapt to user application scenarios becomes a
common yet challenging practice, especially when dealing
with MoE models at an unprecedented scale. In this paper, we
systematically study the expert locality phenomenon in MoE
models, especially focusing on the analysis of its dynamic
features during fine-tuning. Our analysis shows that pre-
trained MoE models tend to maintain their high-confidence
choices of experts even when the model parameters are further
optimized. Based on these insights, we introduce VELA, a
novel locality-aware fine-tuning framework for MoE models.
VELA strategically optimizes expert placement in a distributed
environment, leveraging expert locality to minimize commu-
nication overhead. Finally, we validate both the accuracy of
our analysis and the efficacy of the VELA framework with
extensive experiments.

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
Neural Information Processing Systems, vol. 30, 2017.

[2] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun,
N. Shazeer, and Z. Chen, “GShard: Scaling Giant Models with
Conditional Computation and Automatic Sharding,” in International
Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=qrwe7XHTmYb

[3] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bam-
ford, D. S. Chaplot, D. d. l. Casas, E. B. Hanna, F. Bressand et al.,
“Mixtral of Experts,” arXiv preprint arXiv:2401.04088, 2024.

[4] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin,
P. Liang, and T. B. Hashimoto, “Stanford Alpaca: An Instruction-
following LLaMA Model,” 2023.

[5] S. Shen, L. Hou, Y. Zhou, N. Du, S. Longpre, J. Wei, H. W.
Chung, B. Zoph, W. Fedus, X. Chen, T. Vu, Y. Wu, W. Chen,
A. Webson, Y. Li, V. Y. Zhao, H. Yu, K. Keutzer, T. Darrell,
and D. Zhou, “Mixture-of-Experts Meets Instruction Tuning: A
Winning Combination for Large Language Models,” in International
Conference on Learning Representations, 2024. [Online]. Available:
https://openreview.net/forum?id=6mLjDwYte5

[6] S. Zhang, L. Dong, X. Li, S. Zhang, X. Sun, S. Wang, J. Li, R. Hu,
T. Zhang, F. Wu et al., “Instruction Tuning for Large Language Models:
A Survey,” arXiv preprint arXiv:2308.10792, 2023.

[7] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. d. l. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier et al.,
“Mistral 7B,” arXiv preprint arXiv:2310.06825, 2023.

[8] S. Rajbhandari, C. Li, Z. Yao, M. Zhang, R. Y. Aminabadi, A. A.
Awan, J. Rasley, and Y. He, “DeepSpeed-MoE: Advancing Mixture-
of-Experts Inference and Training to Power Next-Generation AI Scale,”
in International Conference on Machine Learning. PMLR, 2022, pp.
18 332–18 346.

[9] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V. Ko-
rthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro et al.,
“Efficient Large-Scale Language Model Training on GPU Clusters using
Megatron-LM,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2021, pp.
1–15.

[10] W. Fedus, B. Zoph, and N. Shazeer, “Switch Transformers: Scaling to
Trillion Parameter Models with Simple and Efficient Sparsity,” Journal
of Machine Learning Research, vol. 23, no. 120, pp. 1–39, 2022.

[11] J. Li, Y. Jiang, Y. Zhu, C. Wang, and H. Xu, “Accelerating Distributed
MoE Training and Inference with Lina,” in 2023 USENIX Annual
Technical Conference (USENIX ATC 23), 2023, pp. 945–959.

[12] K. Kamahori, Y. Gu, K. Zhu, and B. Kasikci, “Fiddler: CPU-GPU
Orchestration for Fast Inference of Mixture-of-Experts Models,” arXiv
preprint arXiv:2402.07033, 2024.

[13] L. Xue, Y. Fu, Z. Lu, L. Mai, and M. Marina, “Moe-Infinity: Activation-
aware Expert Offloading for Efficient MoE Serving,” arXiv preprint
arXiv:2401.14361, 2024.

[14] E. J. Hu, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen
et al., “LoRA: Low-Rank Adaptation of Large Language Models,” in
International Conference on Learning Representations, 2021.

[15] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer,
“QLoRA: Efficient Finetuning of Quantized LLMs,” arXiv preprint
arXiv:2305.14314, 2023.

[16] M. Zhai, J. He, Z. Ma, Z. Zong, R. Zhang, and J. Zhai, “SmartMoE:
Efficiently Training {Sparsely-Activated} Models through Combining
Offline and Online Parallelization,” in 2023 USENIX Annual Technical
Conference (USENIX ATC 23), 2023, pp. 961–975.

[17] A. Karpathy, “Char-RNN,” https://github.com/karpathy/char-rnn, 2015.
[18] N. Muennighoff, H. Su, L. Wang, N. Yang, F. Wei, T. Yu, A. Singh,

and D. Kiela, “Generative Representational Instruction Tuning,” 2024.
[19] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer Sentinel

Mixture Models,” 2016.
[20] S. Mangrulkar, S. Gugger, L. Debut, Y. Belkada, S. Paul, and

B. Bossan, “PEFT: State-of-the-art Parameter-Efficient Fine-Tuning
methods,” https://github.com/huggingface/peft, 2022.

[21] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving
Language Understanding by Generative Pre-training,” 2018.

[22] J. D. M.-W. C. Kenton and L. K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, 2019, pp. 4171–4186.

[23] E. B. Zaken, Y. Goldberg, and S. Ravfogel, “BitFit: Simple Parameter-
efficient Fine-tuning for Transformer-based Masked Language-models,”
in Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics, 2022, pp. 1–9.

[24] Z. Hu, Y. Lan, L. Wang, W. Xu, E.-P. Lim, R. K.-W. Lee, L. Bing,
and S. Poria, “LLM-Adapters: An Adapter Family for Parameter-
Efficient Fine-Tuning of Large Language Models,” arXiv preprint
arXiv:2304.01933, 2023.

[25] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe,
A. Gesmundo, M. Attariyan, and S. Gelly, “Parameter-efficient transfer
learning for NLP,” in International Conference on Machine Learning.
PMLR, 2019, pp. 2790–2799.

[26] X. L. Li and P. Liang, “Prefix-Tuning: Optimizing Continuous Prompts
for Generation,” in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, 2021, pp. 4582–
4597.

[27] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen,
D. Garcia, B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh,
and H. Wu, “Mixed Precision Training,” in International
Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=r1gs9JgRZ

[28] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer, “GPT3.int8():
8-bit Matrix Multiplication for Transformers at Scale,” in Advances in
Neural Information Processing Systems, A. H. Oh, A. Agarwal,
D. Belgrave, and K. Cho, Eds., 2022. [Online]. Available:
https://openreview.net/forum?id=dXiGWqBoxaD

[29] T. Dettmers, M. Lewis, S. Shleifer, and L. Zettlemoyer, “8-
bit Optimizers via Block-wise Quantization,” in International
Conference on Learning Representations, 2022. [Online]. Available:
https://openreview.net/forum?id=shpkpVXzo3h

[30] S. Li, H. Liu, Z. Bian, J. Fang, H. Huang, Y. Liu, B. Wang, and
Y. You, “Colossal-ai: A Unified Deep Learning System for Large-Scale
Parallel Training,” in Proceedings of the 52nd International Conference
on Parallel Processing, 2023, pp. 766–775.

[31] Y. Zheng, R. Zhang, J. Zhang, Y. Ye, Z. Luo, Z. Feng, and Y. Ma,
“LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language
Models,” in Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 3: System Demonstrations).
Bangkok, Thailand: Association for Computational Linguistics, 2024.
[Online]. Available: http://arxiv.org/abs/2403.13372

