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Abstract—

The shared-medium multi-hop nature of wireless ad hoc net-
works poses fundamental challenges to the design of an effee re-
source allocation algorithm to maximize spatial reuse of spctrum,
while maintaining basic fairness among multiple flows. Wherprevi-
ously proposed scheduling algorithms have been shown to ferm
well in providing fair shares of bandwidth among single-hop wire-
less flows, they do not considemulti-hop flows with an end-to-end
perspective when maximizing spatial reuse of spectrum. Insad,
previous work attempts to break each multi-hop end-to-end fow
into multiple single-hop flows for scheduling purposes. WHe this
may be sufficient for maintaining basic fairness propertiesamong
single-hop subflows with respect to bandwidth, we show thatue to
the intra-flow correlation between upstream and downstrearmhops,
it may not be appropriate for maximizing spatial reuse of bard-
width. In this paper, we analyze the issue of increasing suchpa-
tial reuse of bandwidth from an end-to-end perspective of miti-
hop flows. Through analysis and simulation results, we showhat
our proposed algorithm is able to appropriately distribute resources
among multi-hop flows, so that end-to-end throughput may be raxi-
mized in wireless ad hoc networks, while still maintaining lasic fair-
ness across the multi-hop flows.

I. INTRODUCTION

A wireless ad hoc network consists of a collection of wirsles

nodes without a fixed infrastructure. Each network nodecsens

a router that forwards packets for other nodes. Each flow fhem

source to the destination traverses multiple hops of wsedieks.

Compared with wireline networks where flows contend only at
the packet router with other simultaneous flows through énees

router (contention in the time domain), the unique charésties

a practical point of view, making various degrees of traffe-o
between the conflicting goals of maximizing bandwidth sgati
reuse and maintaining fairness among flows. While the contri
butions are original and noteworthy, their definition diaw is
limited to single-hop flowswith one direct wireless link between
the source and the destination. In contrast, in actual rholbi
wireless ad hoc networks, flows withultiple hopsare common-
place, while single-hop flows are only exceptions.

With existing solutions targeting single-hop flows, a natur
extension to address identical arbitration goals in theedrof
multi-hop flows may be to consider them as multiple indepen-
dentsingle-hop flowgreferred to asubflowshenceforth). How-
ever, after breaking a multi-hop flow into multiple independ
subflows, the inherent correlation between upstream anahdow
stream subflows are lost. One of the possible consequences is
the increased probability of dropping packets due to bufier-
flow in the downstream, since maximizing subflow throughput
may lead to a higher bandwidth allocation in the upstream tha
downstream subflows (in the same multi-hop flow), which leads
to potential buffer overflow in the downstream routers.
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(a) network topology (b) contending relations between flows

of medium access control protocols in wireless networksvsho
that, flows also compete for shared channel bandwidth if th&ig. 1. Fair bandwidth allocation among multi-hop flows: fireblem

are within the transmission ranges of each other (contertio

the spatial domain). This presents the problem of desigaing To illustrate this problem, consider the example topolagy i

appropriate topology-aware resource allocation algoriguch

Fig. 1(a), where there are two multi-hop flows; from nodeA

that contending flows fairly share the scarce channel cgpacto C andF; from D to F'. If we break both multi-hop flows into
while increasing spatial reuse of spectrum as much as pessib subflows, and assume that two subflows contend spatiallgiif th

improve channel utilization.
With intuitive examples, previous work [1] has pointed datt

sources or destinations are within range, then Fig. 1(hjystioe
flow contention relationships between the subflows, whgre

such a topology-aware resource allocation algorithm ne¢edsdenotes thgth subflow of a multi-hop flowr;, counting from the

carefully arbitrate the trade-off between the two extremesin-

source. As showr¥ ; contends with its immediate downstream

taining strict fairness among backlogged flows may lead teteva subflow F1 > and F; » contends with both¥ ; and /5. For

of bandwidth, while solely maximizing the spatial reuse pés

convenience, we assign equal weights o all subflows.

trum violates fairness among flows (e.g. a subset of flows reay b The basic idea from previous work (e.g., [1]) is to first guar-

starved). Towards the goal of reaching a balanced trade-wdf

antee a basic share 8f/4 to all four subflows, wher& denotes

etal.[1], [2], [3] has presented several centralized or distebu the effective channel capacity for data transmissipaad then
scheduling algorithms in wireless ad hoc networks. Thege-al select maximum independent sets of subflows that may transmi

rithms attempt to discuss the problem from both a theorediné
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packets concurrently. The subflows in such a set may increase

1For example, in a IEEE 802.11-based wireless chann2IMbps, the effec-
tive capacity available for data transmissions is apprexéty 1.7 Mbps [4].



their shares to maximize spatial bandwidth reuse. Sifice A. Preliminaries

and F; 5 do not compete with 1, it may be easily shown that ) ) )
spatial reuse of bandwidth is maximized if we guaranfoet WO active (backlogged) subflows arentending subflows

to F », and assigisB/8 to F»; and F,.», and finally3B/4 to el'Fhe_r the source or destination ofone_sub_flow is within theg-
Fi1. However, if we consider multi-hop flow;, sinceF, » is Mission range of the source or dgstmaﬂon o_f the other. Two
the bottleneck, packets coming from subfld; will accumu- mqu-ho_p flows ar&:ontendmg flowsf any of their subflows are
late at nodeB, buffer overflow may eventually occur at node  contending subflows. If multi-hop flows; and F; are contend-

If a reliable transport protocol is used, the end-to-endugh- g flows, we claim that’; and ;; are in the sameontending
put of F; stabilizes taB /4 over time (for both subflows; ; and flow group i.e., G(F) = G(F;) = {F,F;}. We note that
Fy ), with a total effective throughput 6B /4 for all subflows. f G(Fi) = G(Fj) andG(F;) = G(Fy), it may be possible
However, if we allocate3/2 to both Fy; and F o, and B/4 to tha_tFi and F}, are not cont(_andmg flows. In '[hIS. case, we still
both 5 ; andF»., the total effective throughput for all subflowsclaim thatF;, F; and Fj; are in the same contending flow group
increases t@8 B /2, while still guarantees the basic fair shares ot £y, Fi}. As such, all multi-hop flows in the network are es-
B/4 across the subflods sentially partitioned into several disjoint contendingflgroups.

In this paper, we study the problemsillustrated by thisitives A subflow contention graprepresents the spatial contention
example, based on strict definitionstofal effective throughput relationship among contending subflows, where verticeseeor
(that characterizes the extent of spectrum spatial remsifpir-  spond to subflows and connected vertices correspond tormbnte
nessamongmulti-hop flowsrom an end-to-end perspective. Théng subflows. Fig. 1(b) show examples of subflow contention
novelty of our analysis and algorithms comes from the fundéitaphs. Naturally, partitioned subgraphs in a subflow ouide
mental differences between the problems presentsihigje-hop 9graph corresponds to contending flow groups.
andmulti-hopflows, when optimality is sought given strict def- We assume a preassigned weightfor each multi-hop flow
initions of constraints in both problem domains. Our ingggh ;. We further assigny; ; = w;, wherew; ; represents the
shown in this work start from clear and appropriate defingiof weight for the subflows; ;.
our objective (maximizing spatial reuse of bandwidth) aaid-f
ness constraints. Based on these definitions, we show that pr
vious approaqhes that consider singlg—hop flows may noex_aehi B. Objective: Maximizing Spatial Reuse of Spectrum
the same optimal results when multi-hop flows are considered
In order to evaluate any proposed algorithms against anruppeWhen discussing single-hop flows, the objective of maximiz-
bound in ideal situations, we proceed to propose an estimating spatial reuse of bandwidth may naturally be translated t
algorithm (Sec. Ill) to estimate the optimal allocatiorastgies maximizing the aggregate channel utilization [1], or total ef-
based on the defined notion of fairness in multi-hop flows. éofective single-hop throughpin the network; i.e., maximizing
realistically, we first propose a centralized algorithm ¢hiave . u;, for all active (backlogged) single-hop flow# in the net-
our objectives, followed by a distributed algorithm (thatho work, whereu; denotes the throughput of the single-hop flByw
relies on local state information) to approximate its calited For the case of multi-hop flows, if we revisit the previousrmexa
counterpart. Finally, a distributed backoff-based sctisdalgo- ple (Fig. 1), the problem hinges on an appropriate definitibn
rithm is developed to achieve calculated shares of the subflothe objective. If we reuse the objective defined in the siingip
We argue that, while studying single-hop flows may lead tothecase, the total effective single-hop throughpatiity/ 4 (that is su-
retical insights, examining multi-hop flows leads to moragr@l perior thar8 B /2 of our proposed alternative solution). However,
results and applicable algorithms in realistic wireleskadnet- sinceF) » is the bottleneck irf;, the actuaknd-to-end through-
works. putachieved inF; (assuming an effective reliable transport pro-

The remainder of the paper is organized as follows. We motécol) is B/4, leading to a total effective single-hop throughput
vate the work and present clear definitions of the objectwves of 58/4 (which is inferior to the alternative). It decreases since
constraints in this work in Sec. Il. We present our idealized we have taken the end-to-end effect into considerationailBet
timation algorithm in Sec. Ill, and the proposed schedubihg of transport protocols aside, the end-to-end throughpuotufi-
gorithms in Sec. IV. Sec. V evaluates the performance of obop flows is determined by the minimum throughput of its sub-

algorithms. Sec. VI and VII discuss related work and coneludlows, i.e.,u; = min(u;;),j = 1,...,1;, whereu;; denotes the
the paper. throughput of thegi*” subflow and; is the length of the flowF;.

We define theotal effective throughpus the totakénd-to-end

1. OBJECTIVE AND CONSTRAINTS throughput of all multi-hop flows, i.e},, u;, for all active (back-

Conceptually, the objective of our work is teaximize spatial Iogggd) :nul\'?\;::op ﬂOV‘:SFi '? the net.wc.)rll<, V\iﬂermi |ts ?'V?
reuse of spectrunwhile satisfying the constraint afiaintaining previously. en we target on maximizing the spatial reuse o

basic fairness among contending flou@bviously, the prerequi- fr?ectrlﬁlm,totir_ Ob]eﬁlvz'flfs the:f to mtﬁxml;;e :_he _tottf;\;:eeifect
sites of a solution include the definition of a metric thatleages ' 0Ugnput. 1L1S sublly ditierent irom the objective in gle-

the extent of spatial reuse of spectrum, and the definitidrasic hop case. We argue that considering end-to-end flow through-

faimnessamong multi-hop flows. We present clear and appropl‘?-Ut is @ more appropriate metric to measure the effectiswoks

ate definitions of both our objective and our constraints. bandwidth spatial reuse, since packets dell\{ered in aesing
and then dropped in downstream hops constitute a waste df ban

2Detailed discussions of this example are postponed to Bec. | width, rather than the contrary.



C. Fairness: the case of multi-hop flows

F oe—>y 25
If we revisit wireline networks, the fairness constraintynioe in vange 2 i range 8
locally defined among backlogged flows contending for a single & : E » o
bottleneck link. To be more specific, for any two backlogged U \ / ®
flows F; andF}; contending for a bottleneck link during a specific Wy, =201 nin=2:1 Upup=2:1
period[ty, t2], the aggregate services they receive over this link (2) The case of single-hop flows: local fair allocation
satisfy: —" .
in rangeé é in range ! %B
[P2r@ydt)(ts—t1) [ ri(t)dt)(ts —t1) R T,
b LI L 2 Vlce @ { o o0}y
w; ’LUj /)
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(b) The case of multi-hop flows: unfair allocation (to flows with longer paths)

wherer; (t) is the instantaneous link capacity allocated}at
time ¢t. For the case where capacity allocation f¢ris constant

R
and equals;, f:f ri(t)dt = (t2—t1)r;. If we only consider long-

P o

lived flows (F;) with a constant (or stable) source bit rgtg)(we — P> 18/5
. . .. . . . . . Fz{ B2 ) 1B/5}i8
may simplify the definition to the objective of achievinmgighted ] P2 > 05 °
N . Y v
max-min fairnessicross all flows contending for the same bot- Cioea b1

tleneck link; i.e., an allocation stratedy;, ..., r,) is weighted
max-min fait if (1) both}"7_, 7, < Bandr; < p;;i=1,...,n
hold for alln contending flows; and (2) for each floky, any in- Fig. 2. Fairness: the single-hop and multi-hop case
crease im; would cause a decrease in the allocatipfior some
flow F; satisfyingr; /w; < ri/wi. is allocated to the subflow; ;, we haveu;; = r; ;, thusu; =
In multi-hop wireless networks, since flows contend for chan . ) ‘e - e ’
nel allocation in both time and spatial domains, faimesssis min(r; ;). If we equalize channel allocations for all subflows be-
- ' . longing to the same flow, i.e., ifi = r1 = ri2 = ... = 1y,
sentially a topology-aware global property. However, if ordy for ani.-hob flow F: we haver: — r - — 7 As such. from the
consider single-hop flow$’; (as in previous work) within the i-nop " NS S .
same local neighborhood with effective channel capaBifyif viewpoint of channel allocation, we define the fairness traiirsg
the set of conte%lding flows are known, we may start Ey usyilngt 8l7i/wi—7;/w;| < e. Forthe examplein Fig. 2(c) = 35/5,
. / Wl While 7 = . = B/5,5 = 1,2, 3.
previous definition of weighted max-min fairness for lochén- : - ’ L
nel allocation. For the purpose of this paper, however, wkema Finally, we extend our qleflnmon from the_ local Chaﬁ”e' to th
one additional simplifying assumptidhat the sources are al_gIobaI topology. In the strictest sense of fairness, weireghat

: : |7 /w; — 75 /wj| < e is satisfied for all flows in the network.
ways greedy, i.eq; < p; for all contending flowsF;. There- : o ) .
. However, such a constraint limits spatial bandwidth reosétfe
fore, u; = r;. Under such an assumption, for the local effe

) . . "®%iows that are not in the area of intense contention. For the in
tive channel CapaC|t>B, we may dgtermme that the .allocatlonterests of spatial reuse of bandwidth, we only define thadéas
strategy(r:, ..., m) IS fair for n single-hop contending flows constraint among contending flows, rather than consideaihg

(.Fl’ ’.F")’ it > k=1 7k < Bandjri/w; T.QJ/U.}Jl = €OVEraY fows in the networkFairnessamong multi-hop flows in a wire-
time period[ty, t2]. In the example shown in Fig. 2(a) uif; = 2 . . .
less multi-hop network is defined as follows.

andw, = 1, a fair allocation strategfy, ra) = (2B/3, B/3). Definition: In a multi-hop wireless network, the allocation

Within the local channel, we proceed to extend such a deéit-rate (, 2} is fair for contending flows( F £,
nition to the case of multi-hop flows. A straightforward exte : oy, n 9 Lo

sion is as follows. The allocation strate¢sy ) Is fair for in the same contending flow group(1) within any local neigh-
multi-hop contenaing flowsF, F,), if ’2':}{’ Zk < Band borhood (that flows contend for the same channel capdgjty
P R (VA k=1 =

1 Jws — 1 Jw;| < € over any time periodt, , £5]. In the example > w1 miTk < B, with m; being the number of contending sub

shown in Fig. 2(b), we show that such a strategy is unfair teglo flows of F5 in this local neighborhood; and (&); /w; —1; /wj| <

with longer paths. Whet;, is a three-hop flow, the strategy al-c overany time periodty, £5]. . . .
locatesr, — B/3. Since the allocation is shared by the threﬁ'OHenceforth, we only consider the case of a single contending

subflows of F, the end-to-end throughput — B/9. In this W group, since multiple contending flow groups may trarismi

L . . concurrently without contention. Further, we assumaulti-
case,us/u; = 1/6, which is inconsistent withwy /w; = 1/2. L .
: . . hop flows, F1, ..., F,, exist in such a contending flow group,
F3 is penalized for its longer path.

Since our focus is on the end-to-end throughput of flows, f@d each flow; consists of; subflowsFy.y, ..., Fi,.

desired fairness constraint |8;/w; — u;/w;| < € over any o

time period[t,, t;]. For example, in Fig. 2(c), a more appropriD. Basic Fairness

ate allocation strategy may e, , ) = (2B/5,3B/5), so that  We now turn to illustrate the differences between the single

(u1,u2) = (2B/5, B/5), which is fair to F>. Generally, ifr; ; hop and multi-hop cases, and to derive the definition of the
— _ o basic shareof a flow. With respect to end-to-end throughput
°This assumption usually holds due to the scarce capacityviretess channel. £ a fl th . lv definethi traint t

When it does not hold, the results in this work may easily lereded to the more OF @ TIOW, tN€ previously detine _'messcon_s rain gua_ran ees

generic case of weighted max-min fair allocations. lui/w; — uj/w;| < e. The allocation strategies that satisfy such

(c) The case of multi-hop flows: local fair allocation of end-to-end throughput



a fairness constraint are, in fact, not unique, and resuliffar- Given the same channel capacity, a flow with more thhops

ent total effective throughput. For example, we may begin by entitled to the same end-to-end throughput as a flow that ha
considering contending subflows of a multi-hop flow indepemxactly3 hops. We define theirtual lengthof a flow F;, v;, as
dently. By breaking multi-hop flows into subflows, we may uskllows:

the allocation strategfs, . . ., 7%, ) that satisfies the following: 5 >3
[
v, =
no U n ’ { L ;<3
rij= )Y 7il; =B 2
; ; " ; o @ Subject to the faimess constraint apdl" , ~; = B, we may
obtain the allocation stratedy, . .., ), such that’;, = u; =
In order to satisfy the constraint of fairness, it may belgasi%. The total effective throughput under such a strategy
derived thatu; = 7 = w;B/Y."_, w;l;. The total effective ., '~ (" w)B o
B (Z?:lwf)B : SY i Ui = Z‘;L;levj . Sincewv; < [; for any F;;, we observe

throughputis);_, u; = 2y wily The general idea of this that the end-to-end throughput and the total effectiveughput
allocation strategy is to allocatg to all subflows in the same zchieved in the case of multi-hop flowsris lower thanthose
contending flow group, regardless of whether they actuaily-c jn the case of single-hop flows. Nevertheless, such an ditoca
tend in the same local neighborhood. A special case is the-exatrategy still satisfies the fairness constraint. The pgssigher
ple in Fig. 2(c). share of allocation to each flow is made possible by consideri
We show that, if the correlation between subflows in thge intra-flow spatial reuse of spectrum. Hereafter, thecalion
same flow is considered, we may achieve a better total effgg-— Z"% is referred to as thbasic shareof F;, and the

tive throughput. For this purpose, we first consider a M o5iting throughput,; as thebasic throughputWhen all flows

flow shown in Fig. 3(a), where node§ andV;(j > i +1) aré eceive the basic share, the total effective throughput isast

in range. Such a flow is referred to as a flmith a shortcut (> w,)B We claim that an allocation strateqv satisfies the
Fig. 3(b) shows the same flow without such a shortcut. In ourj=: wiv; * i ) . 9y ]
analysis, we assume that all flows are without shortcutss iEhi constraint obasic fairnessif the allocation of any flow is equal
a realistic assumption, since most ad hoc routing protaeogs 1€ OF higher than its basic share. o
Dynamic Source Routing) finds shortest paths. Naturally, the fairness constraint is stronger, while advan-
tageous to achieve a higher total effective throughputlif da-
sic fairnesds required. Our objective is to maximize the total ef-
fective throughput, while supplying the basic fairnesgyenmty.

— T~
Ve In range N

----- Ni-1 Ni Ni+1 . N1 L,
o— P 0—P0—PO0O—PO————————— =0
Ni+2 NJ
(a) multi-hop flow with a shortcut I11. OPTIMAL ALLOCATION STRATEGIES
..... Ni N; N; New ... For the purpose of evaluating the effectiveness of any mego
= algorithms against solutions in the ideal case, we devatogsa
(b) same flow without shortcuts timation algorithm to calculate the optimal allocationastgies
v S AP that achieve our objective of maximizing spatial bandwidilse,
Fohe o R 14 ° Lo while satisfying (1) the fairness constraint; and (2) thsibé&ir-
(c) a multi-hop flow with 6 subflows, without shortcuts ness constraint
Fi2 Fiq Fio '
\ A. Satisfying the Fairness Constraint
AL a 3 We first present optimal allocation strategies to satiséyf#ir-
1.3 15

ness constraint. Since optimality is achieved by maxingjzot

tal effective throughput, we estimate the theoretical ujyoeind

Fig. 3. Examples of multi-hop flows of total effective throughput with a weighted subflow coriitem

graph, where each node in a subflow contention graph is ldbele

Given this assumption, it may be derived that, for a flowith the weight of the corresponding subflow. Fig. 4 shows an

F;, each subflowF;; only contends with its immediate up-example of the weighted flow contention graph.

stream flowF; ,_; and immediate downstream flof ;. If In the weighted subflow contention graph, a complete sub-

l; > 3, we may classify the subflows into three independegtaph is referred to as @ique while a clique not contained in

sets, where subflows in each set may transmit concurrentiyiother clique is referred to as theaximum cliquewhich rep-

{Fij,j = 3k+ 1,k > 0}, {Fi;,j = 3k+ 2,k > 0}, and resents a set of subflows that mutually contend with eactr.othe

{F;;,j =3k+3,k>0}. Thisis, in fact, a graph coloring exer-Assume that there até maximum cliques in the weighted sub-

cise in the subflow contention graphBf. For example, we con- flow contention graph. The sum of weights on all vertices in a

sider a multi-hop flow with 6 subflows (but without shortcuts)clique is referred to as theeighted clique sizevg, , of the cor-

(d) the corresponding subflow contention graph of (c)

illustrated in Fig. 3(c), whose subflow contention grapthisven responding cliqué)s, k = 1,...,J. The maximum of weighted
in Fig. 3(d). We use the minimum number of colo83 {o par- clique sizes of all maximum cliques is referred to aswieéghted
tition the subflows into three non-contending set8} 1, F1 4}, clique numberwg = maxwgq, ,k = 1,...,J. In addition, as-

{Fi2,Fis5},{Fi13, F16} sume that for each flow;, there aren; ;, subflows in the cliqgue



Eo P F Fi () B. Satisfying the Basic Fairness Constraint

{in range In order to supply the basic fairness property, the optirtied a
Pu B R Fa1(3) cation strategy(r “,) heeds to satisfy the basic share con-
Ao »oC Fa() . g rl,é.,rn
Fo1 2 . straintsr; > Zwﬁ’ 1 < ¢ < n. Further, when all flows
. j=1 Wil
P contend for the channel capacify in the same clique, Eq. (3)
v F.(2) needs to be satisfied. Under such constraints, our objeistive
Wa W, Wa:we = 1:2:3:2 to maximize the total effective throughpht;”, u; = 320", 7.
. _ We formulate this optimization problem as the followingdar
(a) network topology (b) weighted subflow contention graph .
programming problem:
Fig. 4. Weighted subflow contention graph maximize Z?:l 7
subject to
Qi (n; > 0). Since all subflows in the same clique contends n
for the channel capacit#, for contending flowgFy, . .., F,,) in ankm <B,1<k<J (6)
the same contending flow group, we have i=1
n ~ sz .
N 7 > ,1<i<n 7
S (i) S B k=1,...,J @3) 2T gy S (7)

i=1
Under the fairness constraint, we hanvg/u; = 7;/r; =

w; /w;. With respect to the channel allocation per unit weig
(denoted by%), we haver; = w;ry. We thus obtain

Eq. (6) is identical to Eq. (3), while Eq. (7) guarantees the
asic share of each flow, and supplies the basic fairnesggyop
e proceed to show that there exists basic feasible sokitin
the above optimization problem. Let = »; — %’ <

1 < n. xz; represents the additional shares that a flow may be

n

Z (nixwi)io = we,ro < B, k=1,...,J (4)  allocated after the basic faimess constraint is satisfiezan be
=1 straightforwardly derived that the above problem is edeiveto
which leads to the following linear programming problem in a canonicahfor
A maximize > | z;
wory < B () subject to

Hence, channel allocation per unit weight is upper bounged b

B/wq. Thus, the theoretical upper bound of béttand end-to- wQy,
end throughput; of a flow F; is w; B /wq, while the upper bound ankxz sB- BZ?ZI wiv;’ Lsks<J (8)
of total effective throughputi§_7"_, u; = >\, w; B/wq. =

Proposition 1: Under the fairness constraint, the upper bound >0 1<i<n 9)
of total effective throughputis """, w; B/wq, wherewg denotes e
the weighted clique number. Obviously{z; =0, i = 1,...,n}is a basic feasible solution.

Proposition 1 sets théheoretical upper bound of the total jth this solution, the total effective throughput%%li;’jff,
j=1 J%7

effective throughput under fairness constraint. It is GRSt nicp, is achieved when all flows enjoy their basic throughiput
with the calculated basic share of a flow, since in the Maximuiy, hetwork

clique, there are at most subflows for each flowr;, we have
wo < Y., wyv;. The equality occurs when all flows havev;
subflows in the maximum cliqgue. However, we note that in so
cases, the upper bound is not achievable. For example, Figs
shows a pentagon-shaped weighted flow contention graph. O
viously, wg = 2. From Proposition 1, the upper bound of tota&S
effective throughput i$B/2, with each flow achieving an end-
to-end throughput oB/2. However, this is, in fact, impossible
to achieve.

Proposition 2: The solution to the above linear programming
roblem constitutes the optimal allocation stratégy, . . ., 75,),
r&ﬂge supplying the basic fairness property. Such an ationa
tegy maximizes the total effective throughput.
The process of constructing the linear programming problem
sentially proves the correctness of the propositios. Khbwn
that there exist polynomial-time algorithms to solve sutihear
programming problem; however, in most cases, it is suffidien
solve the problem with the Simplex algorithm.
F..(1) Mostly, there exist feasible schedules to achieve the @itim
allocation strategy(r1,...,7,) and to allocate the calculated
shares of bandwidth. However, there are still exceptioasaés,
where there is no feasible schedules to achieve the derped o
timal allocation strategy. In thpentagonexample, shown in
F (1) F,, (1) Fig. 5, the optimal allocation strategy/y/2 for each flow, where
21 there exist no feasible schedules to achieve such a stratetiys
Fig. 5. weighted subflow contention graph with unachievalgiper bound of Cas€, we use the calculated optimal allocation strategynasva
total effective throughput: thpentagorexample set ofweight factorgo drive our algorithm proposed in the next
section. Such weights are referred to asaHlecated shareto

F (1) Fa.(D



distinguish from the original weightsi) of the flows. Theal- A. First Phase: The Centralized Form
located sharemcorporate the original weight information, since
the basic fair share is guaranteed during the derivatiot odn
tained based on the original weight. Further, they refleesttu-

To implement the centralized algorithm in the first phase, we
need to assume a centralized node that processes per-flaw inf
mation and constructs the weighted subflow contention graph

ation of contention. Therefore, although in exceptionalaions : . .

. . . . : Though such a centralized node may not be achievable in ad hoc
the optimal allocation strategy is not feasible, it shovesappro- networks. it is feasible when considering a hvbrid netwardt t
priate weight ratio among the flows that may lead to the bést to. ' gany

. includes both ad hoc and infrastructure modes (e.g. batersta
effective throughput. . .
. - . ... in cellular modes). In the latter case, we implement theraént
We revisit the example shown in Fig. 1, with the objective . . )
T , ; Ized algorithm in the base station.
of maximizing spatial reuse of spectrum (i.e., the tota¢etiize T ist tralized . h nod llectsnirs
throughput). If we are to satisfy the fairness constraiotoad- i 0 %Ss'f C?n ralize bp:clrocessmg, e?c 1[]0 e_f[:o l(;.'c h..[;])r
ing to our analysis, the allocation strate@y, 72) = (u1,u2) = dlo? a ocl;tomtjhgomgtsul_ o(\j/vs c:jnglnl? N9 g’”.‘ Itshe » Wi f
(B/3, B/3) for (F1, F»), which leads to a total effective through- elivered 1o the centralized node. 11 a node IS the source ot a

putof2B/3. In comparison, if we are to satisfy the basicfairneéqs’“m"hOp ﬂ_OWE' 't_ IS able_ to calculate _the virtual length;,
constraint, the solution of the linear programming problem of F;, from information derived from routing protocols (such as

VA Dynamic Source Routing), or by a combination of (1) overhear
Maximize 7y + ing the existence of subflows from neighboring nodes; and (2)

subject to local information exchanges with neighboring nodes. Serod
2%, < B to-end paths longer thah has a virtual length o8, no further

. . information beyond a two-hop neighborhood is required f&r d
nt22<B terminingu;. Further, we assume that the source of a flgywos-

71 > B/4 sesses its weight,. After relevant information is collected and
79 > B/4 delivered, the centralized node may then construct the vy

subflow contention graph. By solving the linear programming

leading to the optimal allocation strategyri,72) = problem presented previously (e.g. with the Simplex atham),

(u1,uz) = (B/2,B/4) for (Fy, Fy), which amounts to a total the allocation strategy for each subflow may then be finalized
effective throughput 08 B/4, and this optimal allocation strat- Finally, the centralized node broadcasts the allocatiGiesy to
egy has a feasible scheduling associated with it. all nodes in the network.

We compare the above allocation strategies with resulta fro
previous work [1], where the objective is to maximize to-
tal throughput of all single-hop flows, while guaranteeiray b B. First Phase: The Distributed Form
sic fairness among single-hop flows. In the same exampl

e.. . . . . ) L
opoloy. suh a diferent objecte thal focuses on singe O77CUSY. . CeNVAIZed Aot vt et i
hop flows yields an allocation strate@y; 1,71.2,72.1,72.2) = ) prop ’ y

: . algorithm. The algorithm depends on local flow informatidn o
I(D?:f/ é%BAﬁliﬁ{% 3%42' E/Vl;lth;:)spex;tohzr\l/de t;)ufnzi';hroigh tained by information exchange between neighboring nates,

(B/4,3B/8). The total effective throughput is thusB/s, between neighboring upstream and downstrea_m n(_)d_eS |n-mult|
L : : . . hop flows. The overhead of such a scheme is minimal, since

which is inferior to the optimal solution obtained in our §na hinf i be piaavbacked with dat kets adh

sis 3B/4). However, the total single-hop throughput obtainegl C"! INformation may be piggybacked with cata packets an

in previous work {B/4) exceeds that achieved by our aIIocatior%hzmdcctmtro.I pactl;]ets ﬁmo?.g thet nct)de_s 0? thle paﬁ; of flot\;vh. Eac
strategy §B/2). This comparative study shows the importanct ode determines the allocation strategies for jocal floaset on

of considering end-to-end throughput of multi-hop flows #re N pr_|nC|pIes of opt_lmlzmg the tota! effective thr(_)ugrh[fxnr_ all
. . flows in the local neighborhood, while guaranteeing basizesh
effectiveness of our solutions.

for these flows. We will show that such local optimization may
generate a slightly higher basic share for flows, and thé ¢fta
IV. ACHIEVING ALLOCATION STRATEGIES. ALGORITHMS  fective throughput for the entire network is slightly lowtan
Building on insights derived from our theoretical analysighe centralized form of the algorithm.

we propose a two-phase algorithm to achieve and implemenfor a particular node, thecal optimizationproblem is to
near-optimal allocation strategies that maximize totééaive maximize the total effective throughput of multi-hop flowst
throughput for multi-hop flows, while still supplying the bamay be overheard by the node itself (including information
sic fairness property. The first phase determines the ditoca learned from neighboring nodes), while satisfying coristsa
strategy for subflows at each of the nodes, i€, ...,r,) for with respect to local basic fairness (local counterpart®f &))
(Fy,...,F,). We propose both centralized and distributed altegnd local channel capacify (Eq. (6)). The proposed distributed
natives of the algorithm. In particular, the distributednfioonly ~algorithm consists of the following steps.
depends on local information to approximate the achieved op Construction of local cliquesEach node is able to construct
mality of the centralized form, while still guaranteeingthasic local cliquesby (1) overhearing the existence of subflows within
fair share of each flow. The second phase of the algorithmits transmission range (by overhearing both control packeth
fully distributed, and seeks to implement the calculatddcal as RTS and CTS, or data packets); and (2) exchange overheard
tion strategy for each of the subflows. information with immediate neighbors. Previous work [Sgha



shown that, by exchanging subflow information with immedi-
ate neighbors, cliques involving only local subflows may be-c
structed. For space limitations, details of proving sucsieility
are omitted in this paper.

Intra-flow exchange of constraint®dnce local cliqgues have
been identified, with available virtual lengths of flows (ob-
tained as in the centralized form), the local channel capaon-
straint (Eq. (6)) and the local basic fairness constraiat (#))
are thus known locally. Since we require that subflows froen th
same multi-hop flow obtain equal allocations of the chanael,
node needs to propagate locally obtained constraints taf @

upstream and downstream nodes along the same multi-hop flow.

Such propagation of constraints may take the form of an array
of coefficients and flow identifiers -, 1., i) — of a particular

flow F;. As such, each node along an end-to-end path may evenype

3r1 < B
2 +1r3 < B
o +173 < B
r3+74 < B
2y 4+ 75 < B
71 > B/8
7y > B/8
73 > B/8
7y > B/8
75 > B/8

optimal allocation strategy is thus

tually possess all the constraints that include the coaes$ing (1, 15, 7y, %) = (B/3, B/3,2B/3, B/8,3B/4).

flow. We observe that the constraints that a node constreets a |, jts distributed form, the algorithm, executed on eachejod

a subset ofjlobal constraints, which may only be constructe@nly has a partial view of the flow contention group, hence the

given the complete subflow contention graph. This is redlige constraints from locally constructed cliques are only asstibf

the centralized form of the algorithm, but impossible toieed  those from the centralized algorithm. For example, nddis

in the distributed form. only aware of cliques?;, 2, andQs, hence there are only two
Achieving locally optimal allocation strategiestach node ¢onstraints associated with node(€2; and(2, lead to the same

(with local outgoing flows) uses information obtained froep constraint). 5 is propagated from nod® to other nodes on

vious steps to construct a linear programming problem, 6he Sjow . In addition, the basic share for each flow involved is

lution of which amounts to allocation strategies that artno@l  higher than that in the centralized algorithm, since onlst pa

locally. the multi-hop flows are overheard by a node and included in the
" process of maximizing total effective throughput. Tablbddws
Wyt W Welws= 1:1:1:i1:1 the local cliques on each node, and presents the local gatimi
3 Fél ) ] . tion problem as well as its solution.
o 'I” AN n vange C. Second Phase: Scheduling
AT ¢ o So far, an optimal or near-optimal allocation strategy has
F“I R R B been calculated. A scheduling algorithm is required to im-
*F N plement such a strategy by allocating the calculated shares
A B c Déi” e o ad each flow. We note that the allocation strategy for the sub-
R TR TR TR ' flows has already attempted to maximizing spatial reuse of

(a) network topology (b) subflow contention graph SpeCtl’u m.

It reflects the degree of contention among flows,

so that flows with less contention in its neighborhood may

Fio Fo Fra Fia
i i \ V4 ~ P enjoy a higher allocation of bandwidth. During scheduling,
/ N we propose to use the calculated allocation stratedjpdated
Fii Fis Fia Fis P

clique 1 clique 2 . clique 3

sharg as the new weights for the subflows. In the exam-

ple topology shown in Fig. 4, the original subflow weights
/51 Y F‘”VF‘“ are (Fi.1, Fo, Fop, F3a, Fya) = (1,2,2,3,2). However, to
. g maximize total effect|_ve throughpgt with basic fairnessugun-
For _ o tees, a better allocation strategy(i§ 1,72.1,72.2,73.1,74.1) =
clue 4 e s clique & (3B/10,B/5,B/5,3B/10,7B/10), which may be obtained by

1A

(c) local cliques and their corresponding constraints

the centralized first-phase algorithm solving the follogvprob-
Fig. 6. First phase: the centralized and distributed form lem:

maximize ry + rs + 13 + 1’4

We use an example topology shown in Fig. 6 to illustrate the subject to

details of the first phase of our proposed algorithm. Theabje
tive is to achieve optimal allocation strategies, usinegitthe
centralized or distributed alternatives of the algorithmits cen-
tralized form, the algorithm uses a centralized node toecoll
information from all nodes in the network, and achieves glob
optimality by solving the following problem:

maximizery + ra + 13 + 74 + 15

subject to

+2r+1r3<B

¥+ 71 < B
71 > B/10
79 > B/5
73 > 3B/10
7y > B/5



TABLE |
LOCAL OPTIMIZATION IN THE DISTRIBUTEDALGORITHM

Nodes Local cligues| Constraints 71 7 73 Ty 75
A, B,C, D(Fl) 1, Qo, Q3 maximizery + 75 B/3 B/3
subject to
37‘1 S B
2+ <B
71 > B/3

7y > B/3
F(F») O3, Q4 maximizery +r> + 73 | 2B/5 | B/5 4B/5
subject to
21 +1 < B
2 +1r3< B
1 > B/5

72 > B/5

73 > B/5
H(Fg) Q4, Qs maximizers + s + 74 3B/4 | B/4 3B/4
subject to
r2+1r3< B
rs+7 < B
72 > B/4
73 > B/4
74 > B/4
J, K, M(F47 Fs) Qs, Q6 maximizers + vy + 75 3B/4 | B/4 B/2
subject to
r3+71 < B
21y + 75 < B
73 > B/4
s> B/4

s > B/4

The allocated share of subflows may then beconadocal tableto keep track of the service tags of all its one-hop
(3B/10,B/5,B/5,3B/10,7B/10). neighbor subflows. In order to maintain the local table, thi&R

Due to lack of centralized coordination, scheduling paskat CTS and ACK packets are used to piggyback the new service
subflows from different nodes requires the following taskbé tag of the currently transmitting data packet. Any neiglsbam
implemented: hearing the tag will update its own local table.

Intra-node coordinationsPackets from different subflows are  Assume that a nodehas.J subflows with their corresponding
queued separately; yet the scheduling algorithm needdeotsequeues denoted by quetgj), and the allocated shares for each
the next packet to transmit from the head of the queues, nheysubflow at node denoted by/, ; = 1,2,...,J. In addition,
the allocated share. For example, at node A in Fig. 4, two @siedhe node share is denoted by= ijl 017 i.e, it is the sum of
existfor /1., andFy 1, respectively. The packet selection procesglocated shares of subflows that originate from this node.
needs to guarantee that the ratio of transmissiong-fgr and In this setting, our scheduling algorithm is outlined asdak:

F5; should be3/10 : 1/5. ) . .

Inter-node coordinationsThe scheduling algorithm on each (1) When a packet arrives at nodeit enqueues in its own

. . . bflow queue;
node needs to determine the backoff timer for its readyetws 5! ’ ik N
packets, in order to coordinate with other nodes. If we thihk (2) When a packet’)”” (the kth packet for subflow) with

. . i Jik ; ; .
all the subflows on one node as one virtual flow, while the aggréiZ€Li" reaches the head of its queue, three tags are assigned:

gated allocated share of the subflows as the virtual flow foare — Starttag: S} = v;(t}'*), t/* being the real ime when the
node sharg each node will try to determine an appropriate back-  packetk of subflow; reaches the head of its queue;

off timer that is inversely proportional to the virtual flovae on ~ — Internal finish tag:I7"* = S$7* + L}*/c]. This tag is used
the node. In other words, nodes need to collectively adhest t to determine the next-to-send packet;

contention window to be proportional to their own node share — External finish tag:E}"* = S/* + L}* /c;. This tag is used
In the example of Fig. 4, nodd needs to adjust its contention to determine the contention backoff timer. Note that we use

windows to properly estimate its node shafg (+ F».; = B/2) the node share (not the allocated share for each subflow) in
compared to other neighboring nodes suchBaits node share the tag calculation.
beingFz s + F51 = B/2). (3) The sendei will estimate an approximate backoff valge

We present the details of our scheduling algorithm as fallowfor P/ in its local table which is defined &3 = ZmeT(Sg*k -
and evaluate its performance in Sec. V. The transmissioataf dr,,, ) - « for its subflows, wher@& includes all the subflows stored
packets follows the standard RTS-CTS-DATA-ACK handshgkirin the local tabley,, is the start tag of subflow from nodein the
protocol as in IEEE 802.11 [6], [7] to acquire the floor. Eaclocal table, andv is a tunable parameter to decide the strictness
node,:, is required to maintain a virtual clock;(t), as well as of short-term fairness. On the other hand, the receiver ef th



data packet also estimates a backoff valie,in its table and A. Scenario 1

carry this information in the ACK packet to the sender foufet  \ye yse the network topology in Fig. 1 in this scenario. The
packet scheduling. We define = Zme:r, m;éi(ri —Tm) - & sjmulation results are shown in Table I1.

The actual backoff timer to be set f&¥"* at nodei is uniformly
distributed in[0, CW,,.;,, + max @, R, 0)], where CW,,;,, is the
minimum contention window.

TABLE Il
SIMULATION RESULTS, TOPOLOGY AS INFIG. 1

(4) When a packet is successfully sent, seridkitl update its Parameters | 802.11 | two-tier | 2°A
. . . rial 16079 | 66658 111773
virtual clock as the external finish tag of the previous packbe T2 T(AT) [ 952 60992 | 111084
scheduling algorithm then selects the packet from all ttael - 1 156517 | 65507 | 56404
line packets of the queues that have the smallest interrighfin T221 (721) | 151533 65507 | 56404
tag. The backoff timer is then reset. 7 7i-T | 152485| 126499 | 167488
. . - . lost packets | 20111 | 5666 689
In the algorithm, we use the internal finish tag to determiie t Iosseatio 0132 | 0045 | 0.004

packet to send locally, which is calculated based on theaiéal
share of the subflow. We then use the external finish tag ta-dete
mine the backoff interval using the node share. The proibabfl We may observe that, the throughput ratio among the subflows
buffer overflow is low for a multi-hop flow using our algorithm of 2PA approximates the allocated share calculated in tke fir
since subflows from the same flow will receive approximatedy t phase, i.e41.1 : 712 1 121 1 122 ~ 1/2:1/2:1/4:1/4. In
same channel share. addition, 2PA achieves a higher total effective throughput-
passing both IEEE 802.11 and two-tier in this scenario. &inc
IEEE 802.11 MAC protocol does not consider the fair alloca-
V. PERFORMANCEEVALUATION tion of bandwidth among subflows, a higher packet loss ratio o

We have implemented our two-phase algorithm (referred to §4'S in betweeri’ , and £, due to the fact that the contending
2PAin this section) within the ns-2 2.1b8a network simulatogUbflowsFz.1 and 5 , always occupy the channel. Two-tier at-
and have performed simulations to evaluate the effectsené €MPts to schedule single-hop subflows so that channel isgha
our proposed algorithm. We present simulation results i tW@i"ly, @nd to take advantage of the spatial bandwidth recrsen
network scenarios: (1) a simpler topology shown in Fig. I arthe subflovy receiving the IeasF serwc_e_has started to triitnsm
(2) a more elaborate topology shown in Fig. 6. With respect fowever, since such a scheduling decision allocates_m@msh
these two example scenarios, we compare the performancdOff1.1 thanF: 2, buffer overflow occurs on nodg. This leads
2PA with (1) standard IEEE 802.11 MAC [7]; and (2) ttveo- to the faqt that while 2PA has lost onhg9 packets, tvvo—uer h_as
tier fair scheduling algorithn{abbreviated asvo-tier) in previ- 10St ten times more. These results demonstrate that comgide
ous work [1], which guarantees basic fairness among singpe- SPatial spectrum reuse from an end-to-end perspective &y
flows and maximizes single-hop total effective throughput. ~ Peneficial, but also essential.

We adopt the ns-2 standard physical layer implementatitm wi
a channel capacity of 2Mbps with Two Ray Ground Reflection & Scenario 2
the propagation model. Each node is assigned a maximum transThe second scenario shown in Fig. 6 is more complex with
mission range and an interference rang@if meters. We use longer multi-hop flows, and local nodes may not have com-
Dynamic Source Routing (DSR) as the routing protocol. Dafsete flow contention information about all the multi-hopvito
at source nodes are generated at a constant bit rate (CBR)noits flow contention group. The calculated allocated share
200 packets per second with a packet sizesd2 bytes. In or- (7%, 73,74, 7’5 ) in the centralized form (2PA-C) and distributed
der to perform side-by-side comparisons of our proposed-algorm (2PA-D) of the first phase afg/3,1/3,2/3,1/8,3/4) and
rithm (2PA) with IEEE 802.11 MAC and two-tier, we use iden{1/3,1/5,1/4,1/4,1/2), respectively, with the assumption that
tical weights of1 for each flow (both multi-hop flows and its all flows have the same weight The channel allocation in cen-
subflows) for both simulation scenarios. The length of e&wh s tralized and distributed forms are quite different due te filact
ulation session i§" = 1000 seconds. We are interested in evaluthat the local optimization problem contains only part & ton-
ating the following parameters: (1) During the entire siation  straints that are in global optimization. For example, nétis
session, the number of packets successfully deliveredifdr ef only aware of cliques$); and(), that includeF, (as shown in
the flows (including subflows). This is to evaluate the alteda Table I). Other flows involved in the local optimization suah
share to each of the flows and subflows.(r; - T"andr; ; - T'). Fy, F3 may be subject to other constraints that are not aware of
(2) The total number of successfully delivered packetsdjttie by nodeF. As a result, the channel allocation 6k (1/5) in
entire simulation session. This is to evaluate the extespafial the distributed form is lower than that from a global optiatian
spectrum reuse,e., the total effective throughpdt:_, 7; - 7.  perspectivel/3). Similar arguments apply tB; andF5 as well.

(3) the total number of packets lost, as well as the packet los Table Il shows the results using both the centralized asd di
ratio. This is to evaluate the unevenness among subflowadelotributed first-phase algorithms. The effectiveness of #woad
ing to the same multi-hop flow. Packets delivered in upstregohase scheduling algorithm in 2PA ensures that the thrautghp
subflows and then dropped in downstream subflows represastteach flow under 2PA is proportional to their allocated shar
an allocation strategy that is not optimal or adequate. Since the centralized form uses global optimization, itegaity

CW,,.ir, anda are set t&31 and0.0001 respectively. has a higher total effective throughput than that obtainiul tve



TABLE IlI
SIMULATION RESULTS, TOPOLOGY AS INFIG. 6

Parameters | 802.11 | two-tier | 2PA-C | 2PA-D
ria 1 72150 | 49551 53992 | 67381
ri2T 53590 | 41731 53745 | 67189
ris1 53127 | 39574 52955 | 67189
ri.aT (AT) | 53127 | 39574 52955 | 67189
roa T (P2T) | 8345 14802 54694 | 42457
rs.1 T (P3T) | 197911 | 163809 | 112520 | 57321
ra1 T 49966 | 18865 29365 | 62036
rao T (PFsT) | 24495 | 18053 28022 | 60855
rsa1 T (PT) | 159326 | 157887 | 173971 | 124520
Zle 7 - T | 443204 | 394125 | 422162 | 352341
lost packets | 44494 | 10789 2380 1374
loss ratio 0.100 0.027 0.006 0.004

distributed form. Unlike 802.1155 ; under 2PA is able to obtain
a fair share of the channel since 2PA restri€is so that it does
not utilize the channel too aggressively. With respect étthal
effective throughput, though 2PA-C surpasses two-tiernate
that due to the lack of constraints in the local optimizatitre
allocation strategy fof%,, I3 andF5 in 2PA-D is not as optimal.
Since the topology is particularly tuned to show the diffexes

between 2PA-C and 2PA-D, the results are expected. Furtker,

note that, with respect to throughput, the results of 2PA-boit

10

LANs, and proposes several mapping techniques for better de
termination of backoff timers. Our second-phase algoritiso
attempts to improve fairness by tuning the backoff timerke T
work by Kanodiaet al. [11] may be the most similar to our ap-
proach. It proposes a scheduling scheme referred towds-

hop coordinated schedulirtg provide better QoS guarantees re-
garding end-to-end delays of multi-hop flows. Similarly, &so
treat each multi-hop flows from an end-to-end perspective an
emphasize the coordination between upstream and dowmstrea
subflows. However, we do not discuss end-to-end delays er pro
pose algorithms to address these issues, our objectiviiasatit

in that we focus on allocating spatially reused bandwidtioagn
multi-hop flows from an end-to-end perspective, thus imprgv
the overall channel bandwidth utilization in the network.

VII. CONCLUSIONS

In this paper, we have extensively studied the issue of end-t
end fairness in wireless ad hoc networks. Unlike previouska/o
that break a multi-hop flow into multiple single-hop flows, we
analyze the issue of increasing the spatial reuse of barllwid
from an end-to-end prospective, and propose estimatioor alg
rithms that satisfy the fairness constraint and the basindas
constraint. A two-phase algorithm is presented to appraiem
the optimal allocation strategies, building upon resuftsheo-

comparablewith that of two-tier, since the latter is a centralizedetical analysis. Results of performance evaluation i2 thave

algorithm, and the former is a fully distributed algorithri-
nally, we observe that the packet loss ratio under 2PA ismahi
compared with that under 802.11 and two-tier.

demonstrated the effectiveness of our algorithm comparéukt
two-tier fair scheduling algorithm and the IEEE 802.11 MAC
protocol, To the best of our knowledge, there exists no previ
work that examines similar problenfiiom an end-to-end per-

VI.

Huanget al. [5] focuses on providing max-min fair schedul-
ing. Rather than assigning weights in advance to flows, it at-
tempts to compute the appropriate bandwidth share for eawh fl [1]
based on its surroundings. Though the approach is similar to
ours, there exist two major differences: (1) as in other iprev[2]
ous work, [5] only considers single-hop independent flows|ev
we consider multi-hop flows from an end-to-end perspec{®k; [3]
there are no pre-assigned weights for flows in [5], while our
work takes pre-assigned weights for each flow into consider
tion. Huanget al. implicitly acknowledges that contending flows
have the same weight, and depending on the contentionisityat [5]
each flow will receive its appropriate share without any fltav-s
vation. In our case, by using the preassigned weights asd&-gui [6]
line for the scheduling policy, we allocate basic fair slsafi@r
each flow, and attempt to maximize the total effective threug [,
put at the same time. Similar to [5], Tassiuketsal. [8] also
concentrates on providing max-min fair scheduling in vessl
networks. However, the single-hop contention constraiati-
ferent from ours in that it assumes that any two single-hogsflo
not sharing a node can transmit packets simultaneouslyeake [10]
in our model, any two single-hop flows within two hops are con-
tending with each other. [11]

Nandagopaét al. [9] designs a general analytical framework
and mechanism for arbitrarily specified fairness model vitila
ity function, and concentrates on achieving such a given fai
ness model by an appropriate MAC layer design. Vaidial.

[10] provides a distributed fair scheduling algorithm fareless

RELATED WORK

9]

8] L. Tassiulas and S. Sarkar,

spectiveof multi-hop flows.
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